首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature Dependence of Steady-State and Presteady-State Kinetics of a Type IIb Na+/Pi Cotransporter
Authors:Andrea Bacconi  Silvia Ravera  Leila V Virkki  Heini Murer  Ian C Forster
Institution:Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Abstract:The temperature dependence of the transport kinetics of flounder Na(+)-coupled inorganic phosphate (P(i)) cotransporters (NaPi-IIb) expressed in Xenopus oocytes was investigated using radiotracer and electrophysiological assays. (32)P(i) uptake was strongly temperature-dependent and decreased by approximately 80% at a temperature change from 25 degrees C to 5 degrees C. The corresponding activation energy (E (a)) was approximately 14 kcal mol(-1) for the cotransport mode. The temperature dependence of the cotransport and leak modes was determined from electrogenic responses to 1 mM P(i) and phosphonoformic acid (PFA), respectively, under voltage clamp. The magnitude of the P(i)- and PFA-induced changes in holding current decreased with temperature. E (a) at -100 mV for the cotransport and leak modes was approximately 16 kcal mol(-1) and approximately 11 kcal mol(-1), respectively, which suggested that the leak is mediated by a carrier, rather than a channel, mechanism. Moreover, E (a) for cotransport was voltage-independent, suggesting that a major conformational change in the transport cycle is electroneutral. To identify partial reactions that confer temperature dependence, we acquired presteady-state currents at different temperatures with 0 mM P(i) over a range of external Na(+). The relaxation time constants increased, and the peak time constant shifted toward more positive potentials with decreasing temperature. Likewise, there was a depolarizing shift of the charge distribution, whereas the total available charge and apparent valency predicted from single Boltzmann fits were temperature-independent. These effects were explained by an increased temperature sensitivity of the Na(+)-debinding rate compared with the other voltage-dependent rate constants.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号