首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Apical and basolateral Na/H exchange in cultured murine proximal tubule cells (MCT): Effect of parathyroid hormone (PTH)
Authors:Branka Mrkic  Judith Forgo  Heini Murer  Corinna Helmle-Kolb
Institution:(1) Department of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
Abstract:Summary Kidney proximal tubule Na/H exchange is inhibited by PTH. To analyze further the cellular mechanisms involved in this regulation we have used MCT cells (a culture of SV-40 immortalized mouse cortical tubule cells) grown on permeant filter supports. Na/H exchange was measured using single cell fluorescence microscopy (BCECF) and phosphate transport (measured for comparisons) by tracer techniques. MCT cells express apical and basolateral Na/H exchangers which respond differently to inhibition by ethylisopropylamiloride and by dimethylamiloride, the basolateral membrane transporter being more sensitive. Apical membrane Na/H exchange was inhibited by PTH (10–8 m; by an average of 25%); similar degrees of inhibition were observed when cells were exposed either to forskolin, 8-bromo-cAMP or phorbol ester. Basolateral membrane Na/H exchange was stimulated either by incubation with PTH (to 129% above control levels) or by addition of phorbol ester (to 120% above control levels); it was inhibited after exposure to either forskolin or 8-bromo-cAMP. The above effects of PTH and phorbol ester (apical and basolateral) were prevented by preincubation of cells with protein kinase C antagonists, staurosporine and calphostin C; both compounds did not affect forskolin or 8-bromo-cAMP induced effects. PTH also inhibited apical Na-dependent phosphate influx (29% inhibition at 10–8 m); it had no effect on basolateral phosphate fluxes (Na-dependent and Na-independent). Incubation with PTH (10–8 m) resulted in a rapid and transient increase in Ca2+] i (measured with the fluorescent indicator, fura-2), due to stimulation of a Ca2+ release from intracellular stores. Exposure of MCT cells to PTH did not elevate cellular levels of cAMP. Taken together, these results suggest that PTH utilizes in MCT cells the phospholipase C/protein kinase C pathway to differently control Na/H exchangers (apical vs. basolateral) and to inhibit apical Na/P i cotransport.This work was supported by the Swiss National Science Foundation (Grant No. 32-30785.91), the Stiftung für wissenschaftliche Forschung an der Universität Zürich, the Hartmann-Müller Stiftung, the Sandoz-Stiftung, the Roche Research Foundation and the Geigy-Jubiläumsstiftung. We are grateful to Denise Rossi and Christa Knellwolf for their excellent secretarial assistance.
Keywords:Na/H exchange  Na/P i cotransport  cAMP  protein kinase C  intracellular Ca2+
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号