首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Studies of Receptor Tyrosine Kinase Transmembrane Domain Interactions: The EmEx-FRET Method
Authors:Mikhail Merzlyakov  Lirong Chen  Kalina Hristova
Institution:(1) Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Abstract:The energetics of transmembrane (TM) helix dimerization in membranes and the thermodynamic principles behind receptor tyrosine kinase (RTK) TM domain interactions during signal transduction can be studied using Förster resonance energy transfer (FRET). For instance, FRET studies have yielded the stabilities of wild-type fibroblast growth factor receptor 3 (FGFR3) TM domains and two FGFR3 pathogenic mutants, Ala391Glu and Gly380Arg, in the native bilayer environment. To further our understanding of the molecular mechanisms of deregulated FGFR3 signaling underlying different pathologies, we determined the effect of the Gly382Asp FGFR3 mutation, identified in a multiple myeloma cell line, on the energetics of FGFR3 TM domain dimerization. We measured dimerization energetics using a novel FRET acquisition and processing method, termed “emission-excitation FRET (EmEx-FRET),” which improves the precision of thermodynamic measurements of TM helix association. The EmEx-FRET method, verified here by analyzing previously published data for wild-type FGFR3 TM domain, should have broad utility in studies of protein interactions, particularly in cases when the concentrations of fluorophore-tagged molecules cannot be controlled.
Keywords:Receptor tyrosine kinase  Transmembrane domain  FRET
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号