首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CFD assessment of the effect of convective mass transport on the intracellular clearance of intracellular triglycerides in macrosteatotic hepatocytes
Authors:Gabriel Yarmush  Lucas Santos  Joshua Yarmush  Srivathsan Koundinyan  Mubasher Saleem  Nir I Nativ  Martin L Yarmush  Francois Berthiaume  " target="_blank">Timothy J Maguire  Chris Guaghan
Institution:1.Department of Biomedical Engineering,Rutgers University,Piscataway,USA;2.Center for Engineering in Medicine/Surgical Services,Massachusetts General Hospital and the Shriners Hospitals for Children,Boston,USA;3.Rutgers University,Piscataway,USA
Abstract:Donor livers available to transplant for patients with end-stage liver disease are in severe shortage. One possible avenue to expand the donor pool is to recondition livers that would be otherwise discarded due to excessive fat content. Severely steatotic livers (also known as fatty livers) are highly susceptible to ischemia-reperfusion injury and as a result, primary liver non-function post-transplantation. Prior studies in isolated perfused rat livers suggest that “defatting” may be possible in a timeframe of a few hours; thus, it is conceivable that fatty liver grafts could be recovered by machine perfusion to clear stored fat from the organ prior to transplantation. However, studies using hepatoma cells and adult hepatocytes made fatty in culture report that defatting may take several days. Because cell culture studies were done in static conditions, we hypothesized that the defatting kinetics are highly sensitive to flow-mediated transport of metabolites. To investigate this question, we experimentally evaluated the effect of increasing flow rate on the defatting kinetics of cultured HepG2 cells and developed an in silico combined reaction-transport model to identify possible rate-limiting steps in the defatting process. We found that in cultured fatty HepG2 cells, the time required to clear stored fat down to lean control cells can be reduced from 48 to 4–6 h by switching from static to flow conditions. The flow required resulted in a fluid shear of .008 Pa, which did not adversely affect hepatic function. The reaction-transport model suggests that the transport of l-carnitine, which is the carrier responsible for taking free fatty acids into the mitochondria, is the key rate-limiting process in defatting that was modulated by flow. Therefore, we can ensure higher levels of l-carnitine uptake by the cells by choosing flow rates that minimize the limiting mass transport while minimizing shear stress.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号