首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stress-shielding,growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position
Authors:Francesco?Nappi  Angelo?Rosario?Carotenuto  Donato?Di Vito  Cristiano?Spadaccio  Cristophe?Acar  Email author" target="_blank">Massimiliano?FraldiEmail author
Institution:1.Centre Cardiologique du Nord de Saint-Denis,Paris,France;2.Department of Chemical, Materials and Production Engineering,University of Naples Federico II,Naples,Italy;3.Leibniz-Institut für Polymerforschung,Dresden,Germany;4.Department of Cardiothoracic Surgery,Golden Jubilee National Hospital,Clydebank, Glasgow,UK;5.Department of Cardiovascular Surgery,Hopital de la Salpetriere,Paris,France;6.Department of Structures for Engineering and Architecture,University of Napoli Federico II,Naples,Italy;7.Interdisciplinary Research Center for Biomaterials,University of Napoli Federico II,Naples,Italy
Abstract:Ross operation, i.e., the use of autologous pulmonary artery to replace diseased aortic valve, has been recently at the center of a vivid debate regarding its unjust underuse in the surgical practice. Keystone of the procedure regards the use of an autologous biologically available graft which would preserve the anticoagulative and tissue homeostatic functions normally exerted by the native leaflets and would harmoniously integrate in the vascular system, allowing for progressive somatic growth of aortic structures. With this respect, recently, some of the authors have successfully pioneered a large animal model of transposition of pulmonary artery in systemic pressure load in order to reproduce the clinical scenario in which this procedure might be applied and allow for the development and testing of different devices or techniques to improve the pulmonary autograft (PA) performance, by testing a bioresorbable mesh for PA reinforcement. In the present work, to support and supplement the in vivo animal experimentation, a mathematical model is developed in order to simulate the biomechanical changes in pulmonary artery subjected to systemic pressure load and reinforced with a combination of resorbable and auxetic synthetic materials. The positive biological effects on vessel wall remodeling, the regional somatic growth phenomena and prevention of dilatative degeneration have been analyzed. The theoretical outcomes show that a virtuous biomechanical cooperation between biological and synthetic materials takes place, stress-shielding guiding the physiological arterialization of vessel walls, consequently determining the overall success of the autograft system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号