首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses.
Authors:J Ramalingam  M S Pathan  O Feril  K Ross  X-F Ma  A A Mahmoud  J Layton  M A Rodriguez-Milla  T Chikmawati  B Valliyodan  R Skinner  D E Matthews  J P Gustafson  H T Nguyen
Institution:Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
Abstract:To gain insights into the structure and function of the wheat (Triticum aestivum L.) genomes, we identified 278 ESTs related to abiotic stress (cold, heat, drought, salinity, and aluminum) from 7671 ESTs previously mapped to wheat chromosomes. Of the 278 abiotic stress related ESTs, 259 (811 loci) were assigned to chromosome deletion bins and analyzed for their distribution pattern among the 7 homoeologous chromosome groups. Distribution of abiotic stress related EST loci were not uniform throughout the different regions of the chromosomes of the 3 wheat genomes. Both the short and long arms of group 4 chromosomes showed a higher number of loci in their distal regions compared with proximal regions. Of the 811 loci, the number of mapped loci on the A, B, and D genomes were 258, 281, and 272, respectively. The highest number of abiotic stress related loci were found in homoeologous chromosome group 2 (142 loci) and the lowest number were found in group 6 (94 loci). When considering the genome-specific ESTs, the B genome showed the highest number of unique ESTs (7 loci), while none were found in the D genome. Similarly, considering homoeologous group-specific ESTs, group 2 showed the highest number with 16 unique ESTs (58 loci), followed by group 4 with 9 unique ESTs (33 loci). Many of the classified proteins fell into the biological process categories associated with metabolism, cell growth, and cell maintenance. Most of the mapped ESTs fell into the category of enzyme activity (28%), followed by binding activity (27%). Enzymes related to abiotic stress such as beta-galactosidase, peroxidase, glutathione reductase, and trehalose-6-phosphate synthase were identified. The comparison of stress-responsive ESTs with genomic sequences of rice (Oryza sativa L.) chromosomes revealed the complexities of colinearity. This bin map provides insight into the structural and functional details of wheat genomic regions in relation to abiotic stress.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号