首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics
Authors:Yoshinori Kumazawa  Mutsumi Nishida
Institution:(1) Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, 414 Barker Hall, 94720 Berkeley, CA, USA;(2) Department of Marine Sciences, University of the Ryukyus, 903-01 Okinawa, Japan;(3) Present address: Department of Marine Bioscience, Fukui Prefectural University, 917 Obama, Fukui, Japan
Abstract:Mitochondrial DNA sequences are often used to construct molecular phylogenetic trees among closely related animals. In order to examine the usefulness of mtDNA sequences for deep-branch phylogenetics, genes in previously reported mtDNA sequences were analyzed among several animals that diverged 20–600 million years ago. Unambiguous alignment was achieved for stem-forming regions of mitochondrial tRNA genes by virtue of their conservative secondary structures. Sequences derived from stem parts of the mitochondrial tRNA genes appeared to accumulate much variation linearly for a long period of time: nearly 100 Myr for transition differences and more than 350 Myr for transversion differences. This characteristic could be attributed, in part, to the structural variability of mitochondrial tRNAs, which have fewer restrictions on their tertiary structure than do nonmitochondrial tRNAs. The tRNA sequence data served to reconstruct a well-established phylogeny of the animals with 100% bootstrap probabilities by both maximum parsimony and neighbor joining methods. By contrast, mitochondrial protein genes coding for cytochrome b and cytochrome oxidase subunit I did not reconstruct the established phylogeny or did so only weakly, although a variety of fractions of the protein gene sequences were subjected to tree-building. This discouraging phylogenetic performance of mitochondrial protein genes, especially with respect to branches originating over 300 Myr ago, was not simply due to high randomness in the data. It may have been due to the relative susceptibility of the protein genes to natural selection as compared with the stem parts of mitochondrial tRNA genes. On the basis of these results, it is proposed that mitochondrial tRNA genes may be useful in resolving deep branches in animal phylogenies with divergences that occurred some hundreds of Myr ago. For this purpose, we designed a set of primers with which mtDNA fragments encompassing clustered tRNA genes were successfully amplified from various vertebrates by the polymerase chain reaction.Abbreviations AA stem amino acid-acceptor stem - AC stem anticodon stem - COI cytochrome oxidase subunit I - cytb cytochrome b - D stem dihydrouridine stem - MP maximum parsimony - mtDNA mitochondrial DNA - Myr million years - NJ neighbor joining - PCR polymerase chain reaction - Ti transition - T stem tpsgrC stem - Tv transversion Correspondence to: Y. Kumazawa
Keywords:Vertebrates  Echinoderms  Mitochondrial DNA  tRNA  Cytochrome b  Cytochrome oxidase subunit I  Molecular phylogeny  Bootstrap probability  Polymerase chain reaction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号