首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Causes and consequences of sectoriality in the clonal herb Glechoma hederacea
Authors:Elizabeth A C Price  Michael J Hutchings  Christopher Marshall
Institution:(1) Department of Environmental & Geographical Sciences, Manchester Metropolitan University, M1 5GD Manchester, U.K.;(2) School of Biological Sciences, University of Sussex, Falmer, BN1 9QG Brighton, Sussex, U.K.;(3) School of Biological Sciences, University College of North Wales, LL57 2UW Bangor, Gwynedd, U.K.
Abstract:The causes of sectoriality and consequences for clone behaviour are examined using data from the stoloniferous herb Glechoma hederacea. The proximal causes of physiological integration patterns are investigated using anatomical studies, acid fuchsin dye to reveal patterns of xylem continuity between ramets, and 14C as a label to reveal quantitative photoassimilate translocation patterns in the phloem. Dye movement in the xylem was acropetal and sectorial, and the sectoriality was determined by phyllotaxy. Patterns of 14C-labelled photoassimilate allocation were qualitatively similar to those of xylem based resources, although there was some basipetal movement of photoassimilate. The patterns of physiological integration and independence between ramets are shown to be governed by rules which depend on vascular continuity and discontinuity between ramets. Physiological support to stolon apices results in acquisition of relative branch autonomy (branches become semi-autonomous integrated physiological units, IPUs).This paper evaluates whether observed physiological integration patterns may be modified by altering normal source-sink relationships or by modifying environmental conditions. An experiment using different defoliation intensities, and different defoliation patterns at the same overall intensity, demonstrated that the precise positions of leaves removed from a clone had unique consequences for its subsequent development. Individual ramets of a given clone may be located in microhabitats of differing quality. An experiment in which competition was either present or absent throughout the space occupied by the clone, or patchy in distribution, showed that G. hederacea did not respond to competition at the whole clone level. Instead, connected stolons (IPUs) responded independently to local competition. Sectoriality may promote the restriction of lethal, localised environmental factors within the affected IPU. A study investigating the uptake and translocation of zinc by clones revealed that quantified patterns of zinc distribution resembled patterns of 14C movement in the phloem, and that there was no significant transport of zinc from one stolon to another.Although sectorial patterns of resource movement in G. hederacea can be modified in the short term, in the long-term, physiological integration may not allow this species to integrate the effects of environmental heterogeneity. A mobile clonal species with a high growth rate and relatively short-lived ramets, such as G. hederacea, is likely to benefit from a semi-autonomous response to patch quality at the level of the stolon, since the alternative of widespread intra-clonal support may increase the residence time of the clone in unfavourable pathches.
Keywords:Competition  Defoliation  Morphological plasticity  Physiological integration  Phytotoxic ions  Ramet population dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号