首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of high inorganic selenium and manganese diets for fattening pigs on oxidative stability and pork quality parameters
Institution:1. Department of Agrobiotechnology (IFA-Tulln), Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, University of Natural Resources and Life Sciences, Vienna; Muthgasse 11/1, 1190 Vienna, Austria;2. Fleisch-Technologiezentrum, Anton Ehrenfriedstraße 10, 2020 Hollabrunn, Austria;3. Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln/Donau, Austria
Abstract:Data are scarce regarding combined high Se and Mn supplementation in livestock diets, however, as Se and Mn are functionally related as cofactors of glutathione peroxidase (GPx) and Mn-superoxide dismutase (SOD), respectively, beneficial synergistic effects on oxidative stability of tissues may result. This experiment evaluated the effect of an oversupply of Se and Mn within European legal limits compared with recommendations on performance, oxidative stability of the organism and meat quality in a randomised complete block design. A total of 60 crossbred gilts were fed maize–barley–soya bean meal diets formulated in a 2×2 factorial approach with inorganic Se (0.2 v. 0.5 mg/kg Se dry matter (DM)) or inorganic Mn (20 v. 150 mg/kg Mn DM) from 31 to 116 kg BW. Se supplementation reduced feed intake, whereas high Mn diets impaired average daily gain (P<0.05). Qualitative carcass characteristics were impaired by Se and Mn predominantly in the semimembranosus muscle. Activity of GPx in liver was increased by high Se diets (P<0.05). Mn supplementation increased catalase (CAT) activity in liver, GPx in plasma and total antioxidative capacity (TAC) in muscle, whereas it decreased CAT activity in plasma (P<0.05). Cu/Zn-SOD in muscle showed higher activity in high-Se-low-Mn diets but lower activity when both high Se and Mn were combined (Se×Mn P<0.05). Mn supplementation increased Mn concentration in longissimus thoracis et lumborum, but simultaneously reduced Se concentration (P<0.05). Upon retail display, Mn increased lipid oxidation more pronouncedly (higher thiobarbituric acid reactive substances; P<0.05) than Se (P<0.10). Despite some positive effects (Mn increased TAC, Se increased GPx, Se and Mn increased tenderness), no synergistic effects of high Se and Mn diets or an overall beneficial impact on meat quality, especially during storage, could be observed. Including the negative effects on performance, feeding Se and Mn up to the maximum legal level cannot be recommended.
Keywords:performance  carcass characteristics  antioxidant enzymes  lipid oxidation  retail display
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号