首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ECOLOGY AND MORPHOLOGY OF RECENT CORAL REEFS
Authors:D R STODDART
Institution:Department of Geography, Cambridge University
Abstract:1. The classical ‘coral reef problem’ concerned the geological relationships of reefs as major topographical features; modern coral studies consider reefs both as complex biological systems of high productivity and as geological structures forming a framework for and being modified by coral growth. 2. Deep borings in reefs have conclusively confirmed the general arguments of Darwin, that oceanic reefs developed by progressive subsidence of their foundations. Darwin failed to take account of Pleistocene changes in sea level and their effect on the present surface features of reefs. Daly's alternative ‘glacial control theory’ was based on false assumptions concerning marine erosion rates during glacial periods, but if sea level during the Holocene was higher than at present, as Daly also supposed, the effects on reef features would be profound. 3. Reefs are complex biological systems in tropical seas, dominated by scleractinian corals. Coral faunas are larger and more diverse in the Indo-Pacific than in the Atlantic. Hermatypic corals are restricted to shallow water by the light requirements of their symbiotic algae, but temperature is a major control of worldwide distributions. Temperature, salinity and sediment tolerances of corals are wider than formerly supposed, and corals can survive brief emersion except when it coincides with heavy rainfall. Water turbulence is an important ecological control, but difficult to measure. 4. The trophic status of corals is still unclear, but in spite of their anatomical and physiological specialization as carnivores it is likely that they derive some nutrient substances from zooxanthellae. Suggestions that filamentous algae in coral heads play a major part in the economy of the corals have not been supported by later work, but biomass pyramids constructed on the basis by Odum and Odum remain the only ones available. Most reefs are apparently autotrophic, with 1500–3500 g. Carbon being fixed per m.2 per year. 5. Few animals eat corals, which may account for their success. Important predators are fish and the echinoderm Acanthaster. Quantitative estimates of biogenic erosion of organic skeletons on reefs are high. Fish affect not only corals but other invertebrates, algae and marine phanerogams. 6. Corals may be killed by ‘dark water’, intense rain or river floodwaters, earth movements, human interference and especially hurricanes. Reef recovery after hurricanes may take 10–20 years. 7. In addition to fringing, barrier and atoll reefs, intermediate types are recognised. The main types may consist of linear reefs or faros. Smaller lagoon reefs include pinnacles, patches and platforms, and submerged knolls. Complex cellular or mesh reef patterns are also found. 8. Reefs are conspicuously zoned, both laterally in response to changing exposure to waves to form windward and leeward reefs, and transversely, as a result of steep environmental gradients across reef flats from sea to lagoon. Topographic and ecological zones may be characterized by particular coral species, but these vary widely from reef to reef. A major distinction can be made between reefs with and without algal ridges, which are common on open-ocean trade-wind reefs, in the Indo-Pacific, but are absent on Caribbean reefs and on Indo-Pacific reefs in more sheltered waters. gorgonians are common on Caribbean reefs, alcyonaceans in the Indo-Pacific. 9. Much of the difficulty in comparing reefs stems from the lack of uniformity in surveying methods. Problems of describing the complex three-dimensional patterns of organisms on reefs have yet to be solved, and hence little progress has been made in explanation of these patterns. Explanation in terms of simple environmental controls is inadequate. 10. Understanding the distribution of corals is made more difficult both by taxo-nomic problems and by the plasticity of growth form in different situations. 11. Growth of corals and reefs may be estimated by measuring the growth of individual colonies, measuring rates of calcium carbonate deposition in the skeleton, measuring topographic change on the reef and deducing net rates of reef growth from geological evidence. Massive corals may increase in diameter by 1 cm./year, branches of branching corals may increase in length by 10 cm./year. Study of deposition rates shows variation within colonies, between species, in light and dark, and seasonally. Rates of reef growth extrapolated from colony measurements reach 2–5 cm./year, and contrast with figures as low as 0–02 cm/year averaged over 70 million years from borehole data. Both colony growth rates and geological data suggest worldwide variations in rates of reef growth. 12. In spite of clear evidence of long-continued subsidence, present surface features of reefs, often only thinly veneered by modern corals, have been much affected by recent sea level fluctuations. Many slightly raised reefs at 2–10 m. above sea level date at 90–160 thousand years B.P.; there is evidence for a sea level at about the present level at 30–35 thousand years B.P.; and controversy continues over whether sea level has stood higher than the present at any time since the last sea level rise began about 20,000 years ago. Evidence from many reefs suggests a slightly higher sea level in the last 4000 years, but on other reefs such evidence is lacking. 13. Several reef features (submerged terraces, groove-spur systems, algal ridge, reef flat, reef blocks and reef islands) have been interpreted either as relict features dating from a higher sea level in the last 5000 years, or contemporary features developed in response to present processes. In some cases the evidence is equivocal; in others it is clear that diverse features are being grouped together under the same name. If such features are referable to a higher sea level, this may have been of last Interglacial or even Interstadial age rather than Holocene. 14. A reef consists of a rigid framework defining several major depositional environments within and around it. Sediments are of biological, mainly skeletal origin, except in unusual environments such as the Bahama Banks. The characteristics of sediments derived from organisms depend partly on the breakdown patterns of particular skeletons, partly on transportation and sorting processes. Fine sediments may be either detrital, or physicochemical precipitates. 15. Organisms affect sediments after deposition, by disturbance, transportation and probably comminution. Fish and holothurians have been studied in detail. 16. While new theories of coral reefs are proposed from time to time, the need is less for new theories than for standardised procedures to ensure comparability of reef studies and the identification of variations in reefs both on local and regional scales. While reefs as biological systems adjust relatively rapidly to changes, reefs as geological systems adjust much more slowly. Because of the magnitude and recency of Pleistocene fluctuations in sea level, many biological features of reefs are out of phase with inherited geological features, and this had led to much controversy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号