首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism.
Authors:Mete Civelek  Kristy Ainslie  Jeff S Garanich  John M Tarbell
Institution:Biomolecular Transport Dynamics Laboratory, Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Abstract:Smooth muscle cells (SMC) are exposed to fluid shear stress because of transmural (interstitial) flow across the arterial wall. This shear stress may play a role in the myogenic response and flow-mediated vasomotion. We, therefore, examined the effects of fluid flow on contraction of rat aortic SMC. SMC that had been serum-starved to induce a contractile phenotype were plated on quartz slides and exposed to controlled shear stress levels in a flow chamber. The area of the cells was quantified, and reduction in the cell area was reported as contraction. At 25 dyn/cm(2), significant area reduction was apparent 3 min after the onset of flow and exceeded 30% at 30 min. At 1 dyn/cm(2), significant contraction was not observed at 30 min. The threshold for significant shear-induced contraction appeared to be 11 dyn/cm(2). The signal transduction mechanism was studied at 25 dyn/cm(2). Intracellular calcium was imaged by using the calcium-sensitive fluorescent dye fura 2-AM. There was no detectable change in intracellular calcium during 10 min of exposure to shear stress, even though the cells displayed a significant calcium response to thapsigargin, calcium ionophore, and KCl. Further studies using pathway inhibitors provided evidence that the most important signal transduction pathway mediating calcium-independent contraction in response to fluid flow is the Rho-kinase pathway, although there was a suggestion that protein kinase C plays a secondary role.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号