首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron,Copper, and Zinc Transport: Inhibition of Divalent Metal Transporter 1 (DMT1) and Human Copper Transporter 1 (hCTR1) by shRNA
Authors:Alejandra Espinoza  Solange Le Blanc  Manuel Olivares  Fernando Pizarro  Manuel Ruz  Miguel Arredondo
Institution:1.Micronutrient Laboratory, Institute of Nutrition and Food Technology,University of Chile,Macul,Chile;2.Department of Nutrition, Faculty of Medicine,University of Chile,Santiago,Chile
Abstract:Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号