首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Computational constraints that may have favoured the lamination of sensory cortex
Authors:Treves Alessandro
Institution:(1) SISSA—Programme in Neuroscience, Trieste, Italy
Abstract:At the transition from early reptilian ancestors to primordial mammals, the areas of sensory cortex that process topographic modalities acquire the laminar structure of isocortex. A prominent step in lamination is granulation, whereby the formerly unique principal layer of pyramidal cells is split by the insertion of a new layer of excitatory, but intrinsic, granule cells, layer IV. I consider the hypothesis that granulation, and the differentiation between supra- and infra-granular pyramidal layers, may be advantageous to support fine topography in their sensory maps. Fine topography implies a generic distinction between ldquowhererdquo information, explicitly mapped on the cortical sheet, and ldquowhatrdquo information, represented in a distributed fashion as a distinct firing pattern across neurons. These patterns can be stored on recurrent collaterals in the cortex, and such memory can help substantially in the analysis of current sensory input. The simulation of a simplified network model demonstrates that a non-laminated patch of cortex must compromise between transmitting ldquowhererdquo information or retrieving ldquowhatrdquo information. The simulation of a modified model including differentiation of a granular layer shows a modest but significant quantitative advantage, expressed as a less severe trade-off between ldquowhatrdquo and ldquowhererdquo. The further connectivity differentiation between infra-granular and supra-granular pyramidal layers is shown to match the mix of ldquowhatrdquo and ldquowhererdquo information optimal for their respective target structures.
Keywords:cortical layers  mammals  isocortex  neocortex  cortical organization  localization  attractor dynamics  recurrent collaterals
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号