首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reaction of cythchrome c with one-electron redox reagents. I. Reduction of ferricytochrome c by the hydrated electron produced by pulse radiolysis
Authors:Norman N Lichtin  Avigdor Shafferman  Gabriel Stein
Institution:Department of Physical Chemistry, The Hebrew University, Jerusalem Israel
Abstract:Pulse radiolysis-kinetic spectrometry has been used to investigate the reaction of hydrated electrons with ferricytochrome c in dilute aqueous solution at pH 6.5–7.0. Time resolutions from 2·10?7 to 1 s were employed. Transient spectra from 320 to 580 nm were characterized with a wavelength resolution of ±0.5 nm. 1 In neutral salt-free solution, k(ferricytochrome c+e?aq)=(6.0±0.9)·1010 M?1·s?1 and k(ferricytochrome c+H)=(1.2±0.2)·1010 M?1·s?1. The reaction of ferricytochrome c with hydrated electrons is sensitive to ionic strength; in 0.1 M NaClO4, k(ferricytochrome c+e?aq)=(2.4±0.4)·1010 M?1·s?1. In contrast, k(ferricytochrome c+H) is insensitive to ionic strength. Time resolution of three spectral stages has been accomplished. The primary spectrum is the first observable spectrum detectable after irradiation and is formed in a second-order process. Its rate of formation is indisting-uishable from the rate of disappearance of the electron spectrum. The secondary spectrum is generated in a true first order intramolecular process, k(p→s)=(1.2±0.1)·105 s?1. The tertiary spectrum is also generated in a true first-order process, k(s→t)=(1.3±0.2)·102 s?1. The specific rates of both transformations are independent of the wavelength of measurement. The tertiary spectrum, observable 50 ms after initial reaction and remaining unchanged thereafter for at least 1 s, shows that relaxed ferrocytochrome c is the only detectable product. This product is not autoxidizable, as expected for native reduced enzyme. It is more probable that the intramolecular changes responsible for the p→s and s→t spectral transformations involve the influence of conformational relaxation of ferrocytochrome c upon electronic energy states then that they are intramolecular transmission of reducing equivalents from primary sites of electron attachment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号