首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments
Institution:1. Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina;2. Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina;3. Instituto Argentino de Oceanografía (IADO-CONICET), Camino La Carrindanga km 7,5-edificio E1, 8000 Bahía Blanca, Buenos Aires, Argentina
Abstract:Macroalgae in estuarine and coastal waters, in contrast to vascular salt marsh plants, have previously been utilised as biomonitors of sediment-held metals. The colonising halophyte Salicornia spp., however, occurs in both mudflats alongside macroalgae, as well as in association with salt marsh vascular plants. The present research aims to determine the relationships between fluctuations in sediment-held metals and those in Salicornia spp. over the course of a growing season. Samples of the species and corresponding underlying sediment were collected from the metal mine-polluted Restronguet Creek of the Fal Estuary, Cornwall on a monthly basis between March and November, 2000. Oven-dried sediment and vegetation samples were analysed for total Fe, Cu, Zn and Mn. Significant correlations with both the roots and aerial portion of the plant were found with sediment Cu and Zn concentrations. Significant relationships with either Mn or Fe were not observed. Thus, Salicornia spp. would appear to be a suitable tool for biomonitoring Zn and, particularly, Cu. Hyperaccumulation of Zn in the aerial portion during initial growth also indicates that Salicornia spp. may be useful for alleviating metal contamination through phytoextraction, whilst Cu in the roots is proposed as having potential for phytostabilization.
Keywords:Fal  Halophytes  Mine pollution  Plant sediment relationships  Metals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号