首页 | 本学科首页   官方微博 | 高级检索  
   检索      

转铜/锌超氧化物歧化酶和抗坏血酸过氧化物酶基因甘薯的耐旱性
引用本文:李筠,邓西平,郭尚洙,田中净.转铜/锌超氧化物歧化酶和抗坏血酸过氧化物酶基因甘薯的耐旱性[J].植物生理与分子生物学学报,2006,32(4):451-457.
作者姓名:李筠  邓西平  郭尚洙  田中净
作者单位:1. 中国科学院教育部水土保持与生态环境研究中心,黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌,712100;中国科学院研究生院,北京,100049,中国
2. 中国科学院教育部水土保持与生态环境研究中心,黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌,712100
3. 韩国生物科学与生物技术研究所,大田市 305-806,韩国
4. 鸟取大学农学部,鸟取市 680-8553,日本
基金项目:中国科学院知识创新工程项目;西北农林科技大学校科研和教改项目
摘    要:水分胁迫使转铜/锌超氧化物歧化酶基因(Cu/Zn SOD)和抗坏血酸过氧化物酶基因(APX)甘薯及未转基因甘薯中超氧阴离子(O2^-)、过氧化氢(H2O2)、丙二醛(MDA)含量和细胞膜相对透性增加,在相同条件下以上指标均为转基因甘薯低于未转基因甘薯;而叶片含水量、净光合速率(Pn)和气孔导度(Gs)均下降,SOD和APX酶活性随胁迫程度的加重先增大后减小,胞间CO2浓度(Ci)则先减小后增大,在相同条件下转基因甘薯中以上指标均高于未转基因甘薯。这些结果表明:转入Cu/Zn SOD和APX基因使转基因甘薯清除活性氧的能力增强,在水分胁迫下能保持较高的叶片含水量和Pn,耐旱性得到提高。

关 键 词:水分胁迫  活性氧  光合作用  转Cu/Zn  SOD和APX基因甘薯  耐旱性
收稿时间:2005-12-03
修稿时间:2006-05-22

Drought Tolerance of Transgenic Sweet Potato Expressing Both Cu/Zn Superoxide Dismutase and Ascorbate Peroxidase
LI Yun,DENG Xi-Ping,Sang-Soo Kwak,Kiyoshi Tanaka.Drought Tolerance of Transgenic Sweet Potato Expressing Both Cu/Zn Superoxide Dismutase and Ascorbate Peroxidase[J].Journal Of Plant Physiology and Molecular Biology,2006,32(4):451-457.
Authors:LI Yun  DENG Xi-Ping  Sang-Soo Kwak  Kiyoshi Tanaka
Institution:1.State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Research Center of Water and Soil Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling 712100, China; 2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3.Korea Research Institute of Bioscience and Biotechnology (KRIBB
Abstract:Two strains, Cu/Zn SOD and APX gene transferred sweet potato (TS) and non-transgenic sweet potato (Ipomoea batatas L.) (NT), were used as experimental materials to study the drought tolerance under three different degrees of water stress: 0, -0.44 MPa, -0.78 MPa. The results showed that activities of Cu/Zn SOD and APX increased under -0.44 MPa and decreased under -0.78 MPa (Fig. 2), P(n), G(s) and leaf water content decreased, C(i) increased, then decreased under water stress (Fig. 6), but under the same PEG concentration all these indexes in the TS were higher than those in NT. The accumulation of H(2)O(2) and O(-*)(2) (Fig. 1) increased the degree of lipid peroxidation of the plasma membrane (Fig. 4), prompted the accumulation of MDA (Fig. 3), and the accumulation of TS always lower than the NT at the same PEG concentration. All the results showed that the transgenic sweet potato has a stronger ability to clean up active oxygen than the non-transgenic one, and it can keep a higher leaf water content and P(n) under water stress, so it has a stronger tolerance to drought.
Keywords:water stress  active oxygen  photosynthesis  Cu/Zn SOD and APX gene transferred sweet potato  drought tolerance
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号