首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phenotypic evaluation of genetic variability and selection of yield contributing traits in chickpea recombinant inbred line population under high temperature stress
Authors:Ashutosh Kushwah  Dharminder Bhatia  Gurpreet Singh  Inderjit Singh  Shayla Bindra  Suruchi Vij  Sarvjeet Singh
Institution:1.Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India ;2.Regional Research Station, Punjab Agricultural University, Faridkot, India
Abstract:Heat is a major abiotic stress that drastically reduces chickpea yield. This study aimed to identify heat-responsive traits to sustain crop productivity by screening a recombinant inbred line (RILs) population at two locations in India (Ludhiana and Faridkot). The RIL population was derived from an inter-specific cross between heat-tolerant genotype GPF 2 (C. arietinum L.) and heat sensitive accession ILWC 292 (C. reticulatum). The pooled analysis of variance showed highly significant differences for all the traits in RILs and most of the traits were significantly affected by heat stress at both locations. High values of genotypic coefficient of variation (19.52–38.53%), phenotypic coefficient of variation (20.29–39.85%), heritability (92.50–93.90%), and genetic advance as a percentage of mean (38.68–76.74%) have been observed for plant height, number of pods per plant, biomass, yield, and hundred seed weight across the heat stress environments. Association studies and principal component analysis showed a significant positive correlation of plant height, number of pods per plant, biomass, hundred seed weight, harvest index, relative leaf water content, and pollen viability with yield under both timely-sown and late-sown conditions. Path analysis revealed that biomass followed by harvest index was the major contributor to yield among the environments. Both step-wise and multiple regression analyses concluded that number of pods per plant, biomass and harvest index consistently showed high level of contribution to the total variation in yield under both timely-sown and late-sown conditions. Thus, the holistic approach of these analyses illustrated that the promising traits provide a framework for developing heat-tolerant cultivars in chickpea.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00977-5.
Keywords:Heat stress tolerance  Association analysis  Path coefficient analysis  Regression analysis  Principal component analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号