首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor
Authors:Senft Albert P  Dalton Timothy P  Nebert Daniel W  Genter Mary Beth  Puga Alvaro  Hutchinson Richard J  Kerzee J Kevin  Uno Shigeyuki  Shertzer Howard G
Institution:Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, OH 45267, USA.
Abstract:2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin; TCDD) is a pervasive environmental contaminant that induces hepatic and extrahepatic oxidative stress. We have previously shown that dioxin increases mitochondrial respiration-dependent reactive oxygen production. In the present study we examined the dependence of mitochondrial reactive oxygen production on the aromatic hydrocarbon receptor (AHR), cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1A2 (CYP1A2), proteins believed to be important in dioxin-induced liver toxicity. Congenic Ahr(-/-), Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice, and C57BL/6J inbred mice as their Ahr/Cyp1a1/Cyp1a2(+/+) wild-type (wt) counterparts, were injected intraperitoneally with dioxin (15 microg/kg body weight) or corn-oil vehicle on 3 consecutive days. Liver mitochondria were examined 1 week following the first treatment. The level of mitochondrial H(2)O(2) production in vehicle-treated Ahr(-/-) mice was one fifth that found in vehicle-treated wt mice. Whereas dioxin caused a rise in succinate-stimulated mitochondrial H(2)O(2) production in the wt, Cyp1a1(-/-), and Cyp1a2(-/-) mice, this increase did not occur with the Ahr(-/-) knockout. The lack of H(2)O(2) production in Ahr(-/-) mice was not due to low levels of Mn(2+)-superoxide dismutase (SOD2) as shown by Western immunoblot analysis, nor was it due to high levels of mitochondrial glutathione peroxidase (GPX1) activity. Dioxin decreased mitochondrial aconitase (an enzyme inactivated by superoxide) by 44% in wt mice, by 26% in Cyp1a2(-/-) mice, and by 24% in Cyp1a1(-/-) mice; no change was observed in Ahr(-/-) mice. Dioxin treatment increased mitochondrial glutathione levels in the wt, Cyp1a1(-/-), and Cyp1a2(-/-) mice, but not in Ahr(-/-) mice. These results suggest that both constitutive and dioxin-induced mitochondrial reactive oxygen production is associated with a function of the AHR, and these effects are independent of either CYP1A1 or CYP1A2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号