首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic changes in coho and chinook salmon resulting from acute insufficiency in pancreatic hormones
Authors:E M Plisetskaya  M A Sheridan  T P Mommsen
Institution:Department of Zoology, University of Washington, Seattle.
Abstract:Acute deficiency in pancreatic peptides (insulin, somatostatin-25, glucagon, and glucagon-like peptide) was invoked for 9-12 hr in coho, Oncorhynchus kisutch, and chinook, O. tshawytscha, salmon by administration of specific antisera raised against purified salmon hormones. Insulin-deficient fish were hyperglycemic, had diminished glycogen content in the liver (Plisetskaya et al., '88a, elevated liver triacylglycerol lipase activity, and higher concentration of plasma triiodothyronine (T3) compared to a control group of fish injected with nonspecific rabbit serum. After immunoneutralization of somatostatin-25, fish remained normoglycemic, with higher liver glycogen content, decreased lipase activity, and elevated plasma levels of insulin, while the levels of T3 declined. The induced deficiency in glucagon family peptides led to comparatively smaller changes: liver glycogen content was increased after anti-glucagon-like peptide (aGLP) injection and transient hyperglycemia was apparent following anti-glucagon (aGLU) administration. Circulating levels of insulin remained unaffected for at least 9 hr following aGLU and aGLP treatments. The velocity of pyruvate kinase at 2.5 mM phosphoenolpyruvate (V2.5) was depressed, especially after the combined administration of aGLU + aGLP. The effectiveness of immunoneutralization experiments was greatly dependent on the particular stage of the fish life cycle. Antisera against fish pancreatic peptides proved to be a suitable tool in the studies of hormonal regulation of fish metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号