首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species
Authors:Guss Adam M  Mukhopadhyay Biswarup  Zhang Jun Kai  Metcalf William W
Institution:Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
Abstract:A mutation in the mch gene, encoding the enzyme 5,10-methenyl tetrahydromethanopterin (H(4)MPT) cyclohydrolase, was constructed in vitro and recombined onto the chromosome of the methanogenic archaeon Methanosarcina barkeri. The resulting mutant does not grow in media using H(2)/CO(2), methanol, or acetate as carbon and energy sources, but does grow in media with methanol/H(2)/CO(2), demonstrating its ability to utilize H(2) as a source of electrons for reduction of methyl groups. Cell suspension experiments showed that methanogenesis from methanol or from H(2)/CO(2) is blocked in the mutant, explaining the lack of growth on these substrates. The corresponding mutation in Methanosarcina acetivorans C2A, which cannot grow on H(2)/CO(2), could not be made in wild-type strains, but could be made in strains carrying a second copy of mch, suggesting that M. acetivorans is incapable of methyl group reduction using H(2). M. acetivorans mch mutants could also be constructed in strains carrying the M. barkeri ech hydrogenase operon, suggesting that the block in the methyl reduction pathway is at the level of H(2) oxidation. Interestingly, the ech-dependent methyl reduction pathway of M. acetivorans involves an electron transport chain distinct from that used by M. barkeri, because M. barkeri ech mutants remain capable of H(2)-dependent methyl reduction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号