首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complete displacement of somatic histones during transformation of spermatid chromatin: a model experiment.
Authors:K Marushige  Y Marushige  T K Wong
Abstract:Displacement of histones from calf thymus chromatin has been studied in an attempt to postulate the mechanisms involved in the total removal of somatic-type histones during transformation of spermatid chromatin. When chromatin is saturated with protamine (protamine/DNA, 0.5), histone I becomes displaceable at 0.15-0.3 M NaCl, suggesting that direct replacement by highly basic sperm histone could be a mechanism for its removal. While histone I is the only histone which is extensively degraded upon incubation of chromatin and, therefore, proteolysis might provide an additional mechanism for the removal of this histone, acetylation of chromatin by acetic anhydride greatly increases suscpetibility of histones IIb1, IIb2, and III to the chromosomally associated protease. These histones are extensively degraded and displaced from the DNA upon incubation of the acetylated chromatin. Although histone IV is not appreciably degraded, the proteolytic removal of acetylated histone III from chromatin weakens the interaction of acetylated histone IV to the DNA, and this histone becomes dissociable at 0.3 M NaCl. A comparison of the extent of chemical acetylation of individual histones observed in this investigation with that of enzymatic acetylation which can be achieved in vivo suggests that acetylation and proteolysis could be a mechanism for the removal of histone IIb2 and III. The displacement of histones IIb1 and IV could be explained on the basis of decreased binding to DNA as a result of their acetylation together with the proteolytic removal of their respective partner histones, IIb2 and III.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号