首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon-13 nuclear magnetic resonance studies of the selectively isotope-labeled reactive site peptide bond of the basic pancreatic trypsin inhibitor in the complexes with trypsin, trypsinogen, and anhydrotrypsin
Authors:R Richarz  H Tschesche  K Wüthrich
Abstract:A previously characterized modification of the basic pancreatic trypsin inhibitor (BPTI), with the carbonyl carbon atom of Lys-15 selectively enriched in 13C, the peptide bond Arg-39--Ala-40 cleaved, and Arg-39 removed, was used for 13C NMR studies of the reactive site peptide bond Lys-15--Ala-16 in the complexes with trypsin, trypsinogen, and anhydrotrypsin. The chemical shift of 1-13C]Lys-15 was 175.7 ppm in the free inhibitor, 176.4 ppm in the complexes with trypsin and anhydrotrypsin and the ternary complex with trypsinogen and H-Ile-Val-OH, and 175.7 ppm in a neutral solution containing the inhibitor and trypsinogen. These data show that the trypsin--BPTI complex does not contain a covalent tetrahedral carbon atom in the position of the reactive site peptide carbonyl of the inhibitor. They would be consistent with the formation of a noncovalent complex but cannot at present be used to further characterize the degree of a possible pyramidalization of the carbonyl carbon of Lys-15 in such a complex. The identical chemical shifts in the complexes with trypsin and anhydrotrypsin indicate that the gamma-hydroxyl group of Ser-195 of trypsin does not have an important role in the binding of the inhibitor. The previously described Perkins, S. J. & Wüthrich, K. (1980) J. Mol. Biol. 138, 43--64] stepwise transition from the trypsinogen conformation to an intermediate conformational state in the trypsinogen--BPTI complex and a trypsin-like conformation in the ternary complex trypsinogen--BPTI--H-Ile-Val-OH appears to be manifested also in the chemical shift of 1-13C]Lys-15 of labeled BPTI.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号