首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-affinity calmodulin binding is required for the rapid entry of Bordetella pertussis adenylyl cyclase into neuroblastoma cells.
Authors:D J Oldenburg  M K Gross  C S Wong  D R Storm
Institution:Department of Pharmacology SJ-30, School of Medicine, University of Washington, Seattle 98195.
Abstract:Bordetella pertussis produces a calmodulin-stimulated adenylyl cyclase that invades animal cells and raises intracellular cAMP levels Confer, D. L., & Eaton, J. W. (1982) Science 217, 948-950; Shattuck, R. L., & Storm, D. R. (1985) Biochemistry 24, 6323-6328]. The mechanism for invasion of animal cells by this enzyme has not been defined, but there is considerable evidence that it does not enter by receptor-mediated endocytosis Gordon, V. M., Leppla, S. H., & Hewlett, E. L. (1988) Infect. Immun. 56, 1066-1069; Donovan, M. G., & Storm, D. R. (1990) J. Cell. Physiol. 145, 444-449]. In this study, the importance of high-affinity calmodulin (CaM) binding for entry of the enzyme into neuroblastoma cells was evaluated using a mutant enzyme that has significantly lower affinity for calmodulin than the wild-type enzyme. Oligonucleotide-directed site-specific mutagenesis was used to create a point mutant at a critical tryptophan residue (Trp-242) within the proposed CaM binding domain of the B. pertussis adenylyl cyclase. Substitution of Trp-242 with Glu lowered the apparent affinity of the enzyme for calmodulin by 250-fold; however, the maximal enzyme activity in the presence of saturating calmodulin was equivalent to the wild-type enzyme. The Glu-242 mutant adenylyl cyclase was returned to B. pertussis by homologous recombination, and the enzyme produced by this strain was examined for invasion of neuroblastoma cells. Although the mutant enzyme stimulated the production of intracellular cAMP in neuroblastoma cells, the rate of cAMP accumulation was at least 10-fold lower than that caused by the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号