首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community
Authors:Gang Huang  Chen‐hua Li  Yan Li
Institution:State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
Abstract:Increases in nitrogen (N) deposition and variation in precipitation have been occurring in temperate deserts; however, little information is available regarding plant phenological responses to environmental cues and their relationships with plant growth pattern in desert ecosystems. In this study, plant phenology and growth of six annuals in response to N and water addition were monitored throughout two consecutive growing seasons in 2011 and 2012 in a temperate desert in northwestern China. The effects of N and water addition on reproductive phenology differed among plant species. N and water addition consistently advanced the flowering onset time and fruiting time of four spring ephemerals; however, their effects on two spring‐summer annuals were inconsistent, with advances being noted in one species and delays in another. N and water addition alone increased plant height, relative growth rate, leaf number, flower number, and individual biomass, while their combinative effects on plant growth and reproductive phenology were dependent on species. Multiple regression analysis showed that flowering onset time was negatively correlated with relative growth rate of two species, and negatively correlated with maximum plant height of the other four species. Our study demonstrates that phenological responses to increasing precipitation and N deposition varied in annuals with different life histories, whereby the effects of climate change on plant growth rate were related to reproductive phenology. Desert annuals that were able to accelerate growth rate under increasing soil resource availability tended to advance their flowering onset time to escape drought later in the growing season. This study promotes our understanding of the responses of temperate desert annuals to increasing precipitation and N deposition in this desert.
Keywords:desert ecosystem  flowering  nitrogen deposition  plant phenology  precipitation increase  relative growth rate  spring ephemeral  spring‐summer annual
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号