首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting fine‐scale distributions of peripheral aquatic species in headwater streams
Authors:Christopher R DeRolph  Stacy A C Nelson  Thomas J Kwak  Ernie F Hain
Institution:1. Center for Geospatial Analytics, College of Natural Resources, North Carolina State University, Raleigh, North Carolina, 27695;2. U.S. Geological Survey, North Carolina Cooperative Fish and Wildlife Research Unit, North Carolina State University, Raleigh, North Carolina
Abstract:Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.
Keywords:Conservation planning  habitat modeling  headwater streams  landscape variables  peripheral populations  species distributions  topographic gradient  wild trout
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号