首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination
Authors:Wilbur D Scott  Chyan Ming-Kuan  Hamlin Donald K  Vessella Robert L  Wedge Timothy J  Hawthorne M Frederick
Institution:Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA. dswilbur@u.washington.edu
Abstract:Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of alpha-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab' fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4-7) were prepared and conjugated with an antibody Fab' fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab'-borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab'. For comparison, direct labeling of the Fab' with 125I and 211At was conducted. Direct labeling with Na125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab' with Na211At]At and Chloramine-T resulted in a yield of <1% after quenching with NaS2O5. As another comparison, the same Fab' was conjugated with p-211At]astatobenzoate NHS ester, 211At]1c-Fab', and (separately) with p-125I]iodobenzoate NHS ester, 125I]1b-Fab'. An evaluation in athymic mice demonstrated that 211At]1c-Fab' underwent deastatination. In contrast, the high in vivo stability of 125I]1b-Fab' allowed it to be used as a tracer control for the natural distribution of Fab'. Although found to be much more stable in vivo than 211At]1c-Fab', the biodistributions of nido-carborane conjugated Fab' (125I]2-Fab'/ 211At]2-Fab') and the bis-nido-carborane (VFC) (125I]3-Fab'/211At]3-Fab') had very different in vivo distributions than the control 125I]1b-Fab'. Biodistributions of closo-decaborate(2-) conjugates (125I]4-Fab'/211At]4-Fab', 125I]6-Fab'/211At]6-Fab', and 125I]7-Fab'/211At]7-Fab') demonstrated that they were stable to in vivo deastatination and had distributions similar to that of the control 125I]1b-Fab'. In contrast, a benzyl-modified closo-decaborate(2-) derivative evaluated in vivo (125I]5-Fab'/211At]5-Fab') had a very different tissue distribution from the control. This study has shown that astatinated protein conjugates of closo-decaborate(2-) are quite stable to in vivo deastatination and that some derivatives have little effect on the distribution of Fab'. Additionally, direct 211At labeling of Fab' conjugated with closo-decaborate(2-) derivatives provide very high (e.g., 58-75%) radiochemical yields. However, in vivo data also indicate that the closo-decaborate(2-) may cause some retention of radioactivity in the liver. Studies to optimize the closo-decaborate(2-) conjugates for protein labeling are underway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号