首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Decomposition patterns of unprocessed and processed lignocellulosics in a freshwater fish pond
Authors:Shyam Kumar Barik  Snehasish Mishra  Subbanna Ayyappan
Institution:(1) Division of Aquatic Microbiology, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751 002 Orissa, India (E-mail;(2) Central Institute of Fisheries Education, Versova, Mumbai, 400thinsp061 Maharastra, India
Abstract:In an attempt to recycle the lignocellulosic wastes like Eichhornia crassipes, Salvinia cucullata and rice (Oryza sativa) straw as manurial inputs in freshwater fish pond ecosystem, a decomposition experiment was carried out in litter bags in an oligotrophic freshwater fish pond environment, with the above mentioned three substrates in unprocessed and microbially processed forms. The loss rates, associated microbial groups, oxygen consumption patterns and other related parameters like carbon, nitrogen, phosphorus, cellulose, hemicellulose and lignin were analysed. The mean daily dry matter loss rates (unprocessed: 10.44>6.97>1.97 and processed: 11.03>8.21>3.67) and oxygen uptake rate (unprocessed: 0.675>0.571>0.568 mg O2 g–1 h–1 and processed: 0.592>0.424>0.407 mg O2 g–1 h–1) in raw and processed substrates were in the sequence Eichhornia > rice straw > Salvinia. The oxygen consumption pattern almost covariated with variations in temperature of pond water, daily dry matter loss rates and fungal counts on substrates. During the decay, the percentage of N and P increased whereas that of C decreased, resulting in lowering of C/N and C/P ratios of the substrates. The structural polymeric fractions like cellulose and hemicellulose decreased along with dry matter whereas the lignin content increased after an initial decrease due to loss of other structural carbohydrates resulting in apparent per cent gain of lignin. A higher number of different heterotrophic bacterial groups was observed in the processed substrates as compared to their raw counterparts. However, cellulolytic bacterial numbers were found to fluctuate through the study period. The fungal load was found to be decreasing gradually as the decay progressed. In this study, bacteria were found to be the prominent microbial group responsible for the decay. The nitrogen-fixing, phosphatase-producing and phosphorus-solubilising bacterial groups were observed to play an important role in lowering the C/N and C/P ratios of the decomposing substrates during decay.
Keywords:Eichhornia  litter-bag  loss rate  oxygen consumption  rice straw  Salvinia
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号