首页 | 本学科首页   官方微博 | 高级检索  
   检索      

土壤表面电场对黑土团聚体破碎和侵蚀的影响
引用本文:郭威震,胡斐南,谭滔滔,马任甜,刘婧芳,李喆,赵世伟.土壤表面电场对黑土团聚体破碎和侵蚀的影响[J].应用生态学报,2020,31(8):2644-2652.
作者姓名:郭威震  胡斐南  谭滔滔  马任甜  刘婧芳  李喆  赵世伟
作者单位:1.西北农林科技大学资源环境学院, 陕西杨凌 712100;2.西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西杨凌 712100;3.中国科学院水利部水土保持研究所, 陕西杨凌 712100
基金项目:国家重点研发计划项目(2016YFE0202900)和国家自然科学基金项目(41977024)资助
摘    要:通过定量调控土粒表面电场强度,采用湿筛法和模拟降雨试验,研究了土壤表面电场对东北黑土团聚体稳定性和土壤侵蚀的影响。结果表明: 1)随着土壤本体溶液电解质浓度的降低,土壤颗粒表面电位绝对值和电场强度均不断增加,宾县黑土和克山黑土表面电场强度均可达108 V·m-1数量级;2)随着土粒表面电场增强,土壤团聚体的破碎程度增大,平均重量直径表现为先急剧减小而后保持不变;3)通过人工模拟降雨试验可知,随本体溶液电解质浓度降低,颗粒表面电场增强,土壤流失强度增大。当电解质浓度<0.01 mol·L-1,对应宾县黑土和克山黑土的表面电位绝对值分别大于210和209 mV时,土壤累积流失量随时间的分布曲线较为接近,表明0.01 mol·L-1是影响土壤侵蚀强度的电解质临界浓度值;4)土壤累积流失量与团聚体平均重量直径之间表现出良好的线性关系。综上,当雨水进入土壤,土粒表面电场增强,引发土壤团聚体破碎并释放大量细颗粒,最后在雨水冲刷作用下发生侵蚀。该研究结果可为深入理解东北黑土区土壤水蚀机理提供新的思路。

关 键 词:土壤侵蚀  土壤电场  表面电位  团聚体稳定性  
收稿时间:2020-01-02

Effects of soil surface electric field on aggregates breakdown and water erosion in black soil region of Northeast China
GUO Wei-zhen,HU Fei-nan,TAN Tao-tao,MA Ren-tian,LIU Jing-fang,LI Zhe,ZHAO Shi-wei.Effects of soil surface electric field on aggregates breakdown and water erosion in black soil region of Northeast China[J].Chinese Journal of Applied Ecology,2020,31(8):2644-2652.
Authors:GUO Wei-zhen  HU Fei-nan  TAN Tao-tao  MA Ren-tian  LIU Jing-fang  LI Zhe  ZHAO Shi-wei
Institution:1.College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China;2.State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China;3.Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
Abstract:Through quantitatively adjust soil electric field, we investigated the effect of soil electric field on aggregate stability and soil erosion in black soil region of Northeast China with the experiments of wet sieving and rainfall simulation. Results showed that: 1) Soil surface potential absolute value and electric field strength increased with the decreases of electrolyte concentration in bulk solution. Soil electric field strength could reach to 108 V·m-1. 2) With the increase of soil electric field strength, the degree of fragmentation of soil aggregates increased and the mean weight diameter (MWD) decreased sharply first and then kept constant. 3) With decreasing electrolyte concentration and increasing surface potential, the amount of soil loss increased. As the electrolyte concentration was <0.01 mol·L-1, the corresponding soil surface potential was > 210 and 209 mV for Bin-xian and Keshan, respectively, the cumulative amounts of soil loss with rainfall time almost overlapped, suggesting that the electrolyte concentration of 0.01 mol·L-1 was the threshold for soil erosion. 4) There was a linear relationship between soil cumulative loss and MWD. Our results indicated that soil electric field strength increased as the rain enters into the soil, which could induce soil aggregate breakdown and release amounts of fine soil particles. Finally, soil erosion occurred under the driving of flowing water. Our results provided insights into the mechanism underlying soil erosion in the black soil region of Northeast China.
Keywords:soil erosion  soil electric field  surface potential  aggregate stability  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号