首页 | 本学科首页   官方微博 | 高级检索  
   检索      

不同生长阶段杉木人工林土壤C∶N∶P化学计量特征与养分动态
引用本文:王振宇,王涛,邹秉章,王思荣,黄志群,万晓华.不同生长阶段杉木人工林土壤C∶N∶P化学计量特征与养分动态[J].应用生态学报,2020,31(11):3597-3604.
作者姓名:王振宇  王涛  邹秉章  王思荣  黄志群  万晓华
作者单位:1.福建师范大学地理科学学院, 福州 350007;2.湿润亚热带山地生态国家重点实验室培育基地, 福州 350007;3.福建省上杭白砂国有林场, 福建上杭 364205
基金项目:国家自然科学基金项目(31600495)和福建省自然科学基金项目(2018J01714)资助
摘    要:在福建省白砂国有林场选取幼龄林(5年)、中幼龄林(8年)、近熟林(21年)、成熟林(27年)和过熟林(40年)5个生长阶段的杉木人工林,测定不同土层(0~10、10~20、20~40 cm)土壤总碳(TC)、全氮(TN)、全磷(TP)、全钾(TK)、全钙(Ca)、全镁(Mg)含量以及C∶N∶P化学计量比,探究杉木人工林土壤碳氮磷(C∶N∶P)化学计量特征与养分随林龄的变化规律。结果表明: 随着林分发育,TC、TN未发生显著变化,土壤C∶N保持不变。随着林分发育,0~20 cm土层土壤TP含量呈增加-降低-增加的变化趋势,其中在杉木成熟林达到最低,C∶P和N∶P最大,而20~40 cm土层土壤TP在各个林龄之间无显著变化。Ca、Mg含量在所有土层均在杉木成熟林达到最低。土壤TC与C∶P、N∶P、C∶N均呈显著正相关,TP与C∶P、N∶P呈显著负相关,土壤TP含量是调控土壤C∶P和N∶P的关键因子。杉木人工林发育到成熟期受到P的限制,为保证人工林正常发育,可在杉木速生阶段施加P肥,促进养分良性循环。适当提高杉木林的轮伐期可能会有利于土壤养分的恢复与保持。

关 键 词:林龄  杉木  养分限制  
收稿时间:2020-06-28

Soil C:N:P stoichiometry and nutrient dynamics in Cunninghamia lanceolata plantations during different growth stages
WANG Zhen-yu,WANG Tao,ZOU Bing-zhang,WANG Si-rong,HUANG Zhi-qun,WAN Xiao-hua.Soil C:N:P stoichiometry and nutrient dynamics in Cunninghamia lanceolata plantations during different growth stages[J].Chinese Journal of Applied Ecology,2020,31(11):3597-3604.
Authors:WANG Zhen-yu  WANG Tao  ZOU Bing-zhang  WANG Si-rong  HUANG Zhi-qun  WAN Xiao-hua
Institution:1.School of Geographical Science, Fujian Normal University, Fuzhou 350007, China;2.Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou 350007, China;3.Fujian Shanghang Baisha Forestry Farm, Shanghang 364205, Fujian, China
Abstract:We investigated soil C:N:P stoichiometry and nutrient dynamics of Cunninghamia lanceolata plantations at different stand ages (5, 8, 21, 27 and 40 years old) in Fujian Baisha Fores-try Farm. We measured the concentrations of soil total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), total calcium (Ca), total magnesium (Mg), and soil C:N:P stoichiometry at 0-10, 10-20, and 20-40 cm soil layers during different growth stages. The results showed that soil TC and TN concentrations and C:N remained unchanged during stand development. Soil TP content showed an increase-decrease-increase trend with increasing stand ages. Soil TP content was lowest, whereas C:P and N:P were highest at the mature stage of C. lanceolate plantation in the 0-10 and 10-20 cm soil layers. However, soil TP content showed no significant differences in all stand ages at the 20-40 cm soil layer. The contents of Ca and Mg were lowest at the mature stage of C. lanceolata stand. The TC was positively correlated with soil C:N, C:P and N:P. The TP was significantly and negatively correlated with soil C:P and N:P. Soil TP was a key factor regulating soil C:P and N:P stoichiometry. The development of mature plantation was mainly limited by soil P availability. To sustain the development of C. lanceolata plantations and improve nutrient cycling, phosphorus fertilizer could be applied during the rapid growth period of C. lanceolata. In addition, an appropriate extension of the rotation period of C. lanceolata plantation could facilitate soil nutrient restoration.
Keywords:stand age  Cunninghamia lanceolata  nutrient limitation  
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号