首页 | 本学科首页   官方微博 | 高级检索  
   检索      

增温背景下克氏针茅枯黄期物候对降水响应的光合生理机制
引用本文:王思琪,周广胜,周梦子,吕晓敏,周莉,汲玉河.增温背景下克氏针茅枯黄期物候对降水响应的光合生理机制[J].应用生态学报,2021,32(3):845-852.
作者姓名:王思琪  周广胜  周梦子  吕晓敏  周莉  汲玉河
作者单位:1.中国气象科学研究院固城生态与农业气象试验站, 北京 100081;2.郑州大学地球系统科学与技术研究院生态气象联合实验室, 郑州 450001;3.南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044
基金项目:国家重点研发计划项目(2018YFA0606103);国家自然科学基金项目(41705093);中国气象科学研究院基本科研业务费专项(2020Z004)资助。
摘    要:基于红外线辐射增温与控水相结合的原位模拟试验资料,分析了克氏针茅(Stipa krylovii)枯黄期对水热变化响应的光合生理机制。结果表明: 增温背景下降水是枯黄期的主要影响因子,增水(减水)导致枯黄始期和枯黄盛期的发生时间均延迟(提前),枯黄期持续时间均延长,减水处理对枯黄期持续时间的延长作用更显著。增温背景下,降水变化显著影响枯黄期的生理生态特性,且在枯黄始期最为显著,净光合速率、气孔导度、蒸腾速率、核酮糖-1,5-二磷酸(RuBP)羧化的最大速率(Vc max)、RuBP再生能力的最大速率(Jmax)均与降水量呈显著正相关。通径分析表明,克氏针茅枯黄期的光合生理机制因水热变化的不同而异。当前环境条件下,枯黄期物候变化的主要影响因子是Jmax,主要限制因子是Vc max。未来暖干和暖湿气候下枯黄期物候变化的主要影响因子均是Vc max;但在暖干气候下主要限制因子为Jmax,而在暖湿气候下则无限制因子。这表明克氏针茅枯黄期物候的变化取决于气候环境条件变化对其光合能力的影响。

关 键 词:物候    降水  温度  光合生理机制  克氏针茅  
收稿时间:2020-08-09

Photosynthetically physiological mechanism of Stipa krylovii withered and yellow phenology response to precipitation under the background of warming
WANG Si-qi,ZHOU Guang-sheng,ZHOU Meng-zi,LYU Xiao-min,ZHOU Li,JI Yu-he.Photosynthetically physiological mechanism of Stipa krylovii withered and yellow phenology response to precipitation under the background of warming[J].Chinese Journal of Applied Ecology,2021,32(3):845-852.
Authors:WANG Si-qi  ZHOU Guang-sheng  ZHOU Meng-zi  LYU Xiao-min  ZHOU Li  JI Yu-he
Institution:1.Gucheng Experimental Station of Ecological and Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China;2.Joint Eco-Meteorological Laboratory, College of Earth Science & Technology, Zhengzhou University, Zhengzhou 450001, China;3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract:We examined the photosynthetically physiological mechanism of Stipa krylovii response to warming and precipitation changes, based on an experiment with the treatments of warming by infrared radiator and precipitation treatments by irrigation water. Under the warming background, precipi-tation was the main influencing factor of the withered and yellow phenology. Increasing precipitation postponed the occurrence time of both the beginning and the peak of the withered and yellow phenology, and prolonged the duration of the withered and yellow phenology. The effect of decreasing precipitation on prolonging the duration of the withered and yellow phenology was much stronger. Under the background of warming, the changes of precipitation markedly affected the physiological and ecological characteristics of the withered and yellow phenology, with the effect being the most significant at the beginning of the withered and yellow phenology. The net photosynthetic rate(Pn), stomatal conductance(gs), transpiration rate(Tr), and the maximum ribulose 1,5-bisphosphate(RuBP) carboxylation rate(Vc max), RuBP regeneration capacity(Jmax) were positively correlated with precipitation. Results of the pathway analysis showed that the photosynthetically physiological mechanism of withered and yellow phenology of S. krylovii would be different under different conditions of precipitation and temperature. Under the current environmental condition, Jmaxwas the main influencing factor of the withered and yellow phenology, and Vc maxwas the main limiting factor. Under the scenarios of warm and dry climate and warm and wet climate, Vc max become the main influencing factor of the withered and yellow phenology. Jmaxwould be the main limiting factor in the warm and dry climate conditions, and there would be no limiting factor in the warm and wet climate conditions. Our findings indicated that the withered and yellow phenological changes of S. krylovii depend on the photosynthetical capacity limitation resulted from meteorological conditions.
Keywords:phenology  precipitation  temperature  photosynthetically physiological mechanism  Stipa krylovii
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号