首页 | 本学科首页   官方微博 | 高级检索  
   检索      

硝酸根胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响
引用本文:苏秀荣,王秀峰,杨凤娟,魏珉.硝酸根胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响[J].应用生态学报,2007,18(7):1441-1446.
作者姓名:苏秀荣  王秀峰  杨凤娟  魏珉
作者单位:1. 山东农业大学化学与材料科学学院,山东泰安,271018
2. 山东农业大学园艺科学与工程学院,山东泰安,271018
基金项目:国家自然科学基金;山东省自然科学基金
摘    要:研究了不同浓度NO3-胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响.结果表明,当NO3-浓度较低时(14~98 mmol·L-1),适当增加NO3-浓度,可增强黄瓜幼苗叶片对光的捕获能力,促进光合作用.随着NO3-浓度的进一步增加(140~182 mmol·L-1),PSⅡ光化学效率降低,电子传递受到抑制,净光合速率降低;吸收的光能中,通过天线色素的热耗散增加,用于光化学反应的能量降低,光化学效率下降.140和182 mmol·L-1 NO3-处理黄瓜幼苗叶片6 d后净光合速率(Pn)极显著下降,分别比对照降低了35%和78%;PSⅡ最大光化学效率(Fv/Fm)、天线转化效率(Fv’/Fm’)、实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)均低于对照,非光化学猝灭(NPQ)高于对照,激发能在两个光系统间的分配不平衡性(β/α-1)增大.高浓度NO3-处理的黄瓜幼苗叶片各荧光参数变化幅度比低浓度大.当光照增强时,高浓度NO3-胁迫下黄瓜幼苗叶片吸收的光能中应用于光化学反应的份额(P) 显著降低,天线热耗散的份额(D)显著增加. 天线热耗散是耗散过剩能量的主要途径.

关 键 词:NO3-胁迫  光化学效率  光能分配  净光合速率
文章编号:1001-9332(2007)07-1441-06
收稿时间:2006-8-2
修稿时间:2006-08-022007-04-09

Effects of NO3-stress on photosynthetic rate, photochemical efficiency of PSⅡ and light energy allocation in cucumber seedling leaves
SU Xiu-rong,WANG Xiu-feng,YANG Feng-juan,WEI Min.Effects of NO3-stress on photosynthetic rate, photochemical efficiency of PSⅡ and light energy allocation in cucumber seedling leaves[J].Chinese Journal of Applied Ecology,2007,18(7):1441-1446.
Authors:SU Xiu-rong  WANG Xiu-feng  YANG Feng-juan  WEI Min
Institution:College of Chemistry and Material Science, Shandong Agricultural University, Tai' an 271018, Shandong, China. xrsu@sdau.edu.cn
Abstract:This paper studied the effects of different NO3- concentration on the photosynthetic rate, photochemical efficiency, and absorbed light energy allocation in cucumber seedling leaves. The results indicated that when the available NO3- concentration in the medium was low (14-98 mmol NO3- x L(-1)), an appropriate supplement of NO3- could enhance the capability of cucumber leaves in capturing light energy, and promote the photosynthesis. However, with further increase of NO3-, the photochemical efficiency of PS II decreased, electron transfer restrained, and net photosynthetic rate as well as the absorbed light energy used in photochemical reaction of PS II decreased. At the same time, the light energy used in antenna heat dissipation increased, while the photochemical efficiency decreased. After treated with 140 and 182 mmol NO3- x L(-1) for 6 days, the photosynthetic rate (P(n)) was decreased by 35% and 78%, respectively, maximal PS II efficiency at open centers in the absence of NPQ (F(v)/F(m)), antenna efficiency at open centers in the presence of NPQ (F(v)'/F(m)'), actual PS II efficiency (phi (PSII ) and photochemical quenching (q(P)) were lower, non-photochemical quenching (NPQ) was higher, and the deviation from full balance between PS I and PS II (beta/alpha - 1) was improved significantly, compared with the control. The fluctuant ranges of these chlorophyll fluorescence parameters were increased at higher NO3- concentration, compared with those at lower NO3- concentration. The absorbed light energy allocated to the photochemical reaction of PS II (P) was reduced by high light intensity and high NO3- concentration. Meanwhile, the proportion allocated in antenna heat dissipation (D) increased significantly. Antenna heat dissipation was the main way for excessive energy dissipation.
Keywords:NO3^- stress  photochemical efficiency  light energy allocation  photosynthetic rate  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号