首页 | 本学科首页   官方微博 | 高级检索  
   检索      

甜樱桃对15N尿素的吸收、分配和利用特性
引用本文:赵凤霞,姜远茂,彭福田,高相彬,刘丙花,王海云,赵林.甜樱桃对15N尿素的吸收、分配和利用特性[J].应用生态学报,2008,19(3):686-690.
作者姓名:赵凤霞  姜远茂  彭福田  高相彬  刘丙花  王海云  赵林
作者单位:山东农业大学作物生物学国家重点实验室,山东泰安,271018;山东农业大学园艺科学与工程学院,山东泰安,271018
基金项目:引进国际先进农业科技计划(948计划) , 山东省农业科技成果转化基金
摘    要:以5年生‘早大果’甜樱桃为试材, 研究了其在萌芽前土施15N尿素的吸收、分配和利用特性.结果表明:植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率(Ndff)均随时间推移逐渐升高, 盛花期细根和贮藏器官的Ndff较高; 果实硬核期,新生器官中长梢和长梢叶的Ndff增长迅速,分别达0.72%和0.59%; 果实硬核期到采收期,果实的Ndff增长迅速,到采收期达到最高,为1.78%; 果实采收后到花芽分化期,新生器官Ndff增长减慢而贮藏器官增长迅速.盛花期根系吸收的氮素首先分配到贮藏器官,粗根15N分配率最高,为54.91%;果实硬核期细根和贮藏器官15N分配率由盛花期的85.43%下降到55.11%,而地上部新生器官则升高至44.89%;果实采收期15N分配率变化不大,果实采收后氮素营养迅速向贮藏器官中运转,花芽分化期细根和贮藏器官的15N分配率升高至72.26%,而地上部新生器官15N分配率与采收期相比下降了19.31%.从盛花期到花芽分化期,植株对15N尿素的当季利用率呈升高趋势,于花芽分化期达到最高,为16.86%.

关 键 词:甜樱桃  15N  吸收  分配  利用  甜樱桃  尿素  根系吸收  分配率  利用特性  absorption  urea  Characteristics  allocation  utilization  趋势  利用率  植株  氮素营养  变化  地上部  粗根  增长减慢  花芽分化期  果实采收
文章编号:1001-9332(2008)03-0686-05
收稿时间:2007-02-07
修稿时间:2007年2月7日

Characteristics of urea 15N absorption, allocation, and utilization by sweet-cherry (Prunus avium L.).
ZHAO Feng-xia,JIANG Yuan-mao,PENG Fu-tian,GAO Xiang-bin,LIU Bing-hua,WANG Hai-yun,ZHAO Lin.Characteristics of urea 15N absorption, allocation, and utilization by sweet-cherry (Prunus avium L.).[J].Chinese Journal of Applied Ecology,2008,19(3):686-690.
Authors:ZHAO Feng-xia  JIANG Yuan-mao  PENG Fu-tian  GAO Xiang-bin  LIU Bing-hua  WANG Hai-yun  ZHAO Lin
Institution:State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China. fxzhao1982@163.com
Abstract:With five-year old 'Zaodaguo' sweet-cherry (Prunus avium L.) as test material, this paper studied the characteristics of its urea 15N absorption, allocation, and utilization when applied before bud-break. The results showed that the Ndff of different organs increased gradually with time, and was higher in fine roots and storage organs at full-blooming stage. At fruit core-hardening stage, the Ndff of long shoots and leaves increased quickly, reaching to 0.72% and 0.59% , respectively. From fruit core-hardening to harvesting stage, the Ndff of fruit had a rapid increase, with the peak (1.78%) at harvesting stage. After harvest, the Ndff of neonatal organs increased slowly while that of storage organs increased quickly. At full-blooming stage, the absorbed 15N in roots was firstly allocated to storage organs, with the highest allocation rate (54.91%) in large roots. At fruit core-hardening stage, the allocation rate in fine roots and storage organs decreased from 85.43% to 55.11%, while that in neonatal branches and leaves increased to 44.89%. At harvesting stage, the allocation rate in different organs had no significant change, but after harvest, the absorbed 15N had a rapid translocation to storage organs, and the allocation rate in fine roots and storage organs reached the highest (72.26%) at flower bud differentiation stage. The 15N allocation rate in neonatal branches and leaves at flower bud differentiation stage was decreased by 19.31%, compared with that at harvesting stage. From full-blooming to flower bud differentiation stage, the utilization rate of urea 15N was increasing, and reached the peak (16.86%) at flower bud differentiation stage.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号