首页 | 本学科首页   官方微博 | 高级检索  
   检索      

水稻氮素营养高光谱遥感诊断模型
引用本文:谭昌伟,周清波,齐腊,庄恒扬.水稻氮素营养高光谱遥感诊断模型[J].应用生态学报,2008,19(6):1261-1268.
作者姓名:谭昌伟  周清波  齐腊  庄恒扬
作者单位:1. 扬州大学江苏省作物遗传生理重点实验室,江苏扬州,225009
2. 农业部资源遥感与数字农业重点开放实验室,北京,100081
3. 北京师范大学地理学与遥感科学学院/遥感科学国家重点实验室,北京,100875
基金项目:农业部资源遥感与数字农业重点开放实验室开放基金 , 国家高技术研究发展计划(863计划)
摘    要:对水稻氮素含量与原始光谱反射率、一阶微分光谱以及高光谱特征参数间的相关性进行了分析,并构建和验证了以遥感参数为自变量的水稻氮素营养诊断模型.结果表明:氮素含量在水稻各器官中总的变化趋势为茎<鞘<穗<叶;各器官在可见光波段的光谱反射能力为叶<穗<鞘<茎,在近红外波段则与此相反.以波长796.7 nm处的光谱反射率和738.4 nm处的一阶微分光谱反射率为自变量的线性模型和指数模型的决定系数(R2)分别为0.7996和0.8606,二者均能较好地诊断水稻氮素营养,但最适合诊断水稻氮素含量的拟合模型是以植被指数的归一化变量(SDr-SDb)/(SDr+SDb)为自变量构建的水稻氮素营养高光谱遥感诊断模型[y=365871+639323(SDr-SDb)/(SDr+SDb),R2=0.8755,RMSE=0.2372,相对误差=11.36%],该模型可定量诊断水稻氮素营养.

关 键 词:水稻  氮素营养  高光谱遥感  诊断模型  水稻  氮素营养  光谱遥感  诊断模型  nutritional  status  nitrogen  rice  plant  models  diagnosis  remote  sensing  定量诊断  相对误差  RMSE  化变量  植被指数  拟合模型  决定系数  指数模型  线性模型  微分
文章编号:1001-9332(2008)06-1261-08
收稿时间:2007-07-30
修稿时间:2007年7月30日

Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status.
TAN Chang-wei,ZHOU Qing-bo,QI La,ZHUANG Heng-yang.Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status.[J].Chinese Journal of Applied Ecology,2008,19(6):1261-1268.
Authors:TAN Chang-wei  ZHOU Qing-bo  QI La  ZHUANG Heng-yang
Institution:Jiangsu Province Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China. tanwei010@126.com
Abstract:The correlations of rice plant nitrogen content with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters were analyzed, and the hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status with these remote sensing parameters as independent variables were constructed and validated. The results indicated that the nitrogen content in rice plant organs had a variation trend of stem < sheath < spike < leaf. The spectral reflectance at visible light bands was leaf < spike < sheath < stem, but that at near-infrared bands was in adverse. The linear and exponential models with the raw hyperspectral reflectance at 796.7 nm and the first derivative hyperspectral reflectance at 738.4 nm as independent variables could better diagnose rice plant nitrogen nutritional status, with the decisive coefficients (R2) being 0.7996 and 0.8606, respectively; while the model with vegetation index (SDr - SDb) / (SDr + SDb) as independent variable, i. e., y = 365.871 + 639.323 ((SDr - SDb) / (SDr + SDb)), was most fit rice plant nitrogen content, with R2 = 0.8755, RMSE = 0.2372 and relative error = 11.36%, being able to quantitatively diagnose the nitrogen nutritional status of rice.
Keywords:
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号