首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Dictyostelium morphogenesis by RapGAP3
Authors:Taeck J Jeon  Susan Lee  Gerald Weeks
Institution:a Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
b Department of Microbiology and Immunology, University of British Columbia, 1365 Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
Abstract:Rap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration. The loss of RapGAP3 results in a severely altered morphogenesis of the multicellular organism at the late mound stage. Direct measurement of cell motility within the mound shows that rapGAP3 cells have a reduced speed of movement and, compared to wild-type cells, have a reduced motility towards the apex. rapGAP3 cells exhibit some increased EDTA/EGTA sensitive cell-cell adhesion at the late mound stage. RapGAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation, which is dependent on F-actin polymerization. We suggest that the altered morphogenesis and the cell-sorting defect of rapGAP3 cells may result in reduced directional movement of the mutant cells to the apex of the mound.
Keywords:Dictyostelium  Rap1  RapGAP  Morphogenesis  Cell adhesion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号