首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of maternal diabetes on basement membranes, type 2 cells, and capillaries in the developing rat lung
Authors:M M Grant  N R Cutts  J S Brody
Institution:1. Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118 USA;2. Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 USA
Abstract:To determine the effect of maternal diabetes on rat lung development, we studied the ultrastructure of the alveolar wall from the ninteenth day of gestation (term = 22 days) through the eighth postnatal day in fetal and neonatal rats of mothers with streptozotocin-induced diabetes. In normal fetal lung development, epithelial basement membranes develop large discontinuities beneath type 2 cells, through which cytoplasmic foot processes extend into the interstitium. Maternal diabetes delays the appearances of these epithelial basement membrane discontinuities and reduces the number of type 2 cell processes that penetrate it. These alterations in epithelial basement membrane are reversed after birth. There is no ultrastructural evidence of a delay in type 2 cell maturation as assessed by lamellar body volume density morphometry. Endothelial basement membranes, which are not present around the growing pulmonary capillary bed in the pseudoglandular lung, are seen late in normal gestation, primarily around capillaries forming the mature air-blood barrier. This development of endothelial basement membrane may be delayed in the fetuses of diabetic mothers and reflects a significant delay in the expansion of the pulmonary capillary network in these animals as assessed by morphometric volume density measurements. This effect on capillary growth is not reversed in the newborn animals through 8 days after birth. The summation of these effects indicates a generalized slowing of fetal lung development by maternal diabetes, some of which effects persist after birth and may continue to influence lung development during the period of postnatal alveolar septal growth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号