首页 | 本学科首页   官方微博 | 高级检索  
   检索      

基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析
引用本文:李英慧,袁翠平,张辰,李伟,南海洋,常汝镇,邱丽娟.基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析[J].遗传,2009,31(12):1259-1264.
作者姓名:李英慧  袁翠平  张辰  李伟  南海洋  常汝镇  邱丽娟
作者单位:国家农作物基因资源与遗传改良重大科学工程, 农业部作物种质资源利用重点开放实验室, 中国农业科学院作物科学研究所, 北京100081
基金项目:国家自然科学基金项目,国家高技术发展计划(863计划)项目,国家"十一五"科技支撑计划项目,国家重点基础研究发展计划项目 
摘    要:以我国363份栽培和野生大豆资源为材料, 对大豆胞囊线虫抗性候选基因(rhg1和Rhg4)的SNP位点(8个)进行遗传变异分析, 以期阐明野生和栽培大豆间遗传多样性及连锁不平衡水平差异。结果表明, 与野生大豆相比, 代表我国栽培大豆总体资源多样性的微核心种质及其补充材料的连锁不平衡水平较高(R2值为0.216)。在栽培大豆群体内, 基因内和基因间分别有100%和16.6%的SNP位点对连锁不平衡显著, 形成两个基因特异的连锁不平衡区间(Block)。在所有供试材料中共检测到单倍型46个, 野生大豆的单倍型数目(27)少于栽培大豆(31), 但单倍型多样性(0.916)稍高于栽培大豆(0.816)。单倍型大多数(67.4%)为群体所特有(31个), 其中15个为野生大豆特有单倍型。野生大豆的两个主要优势单倍型(Hap_10和Hap_11)在栽培大豆中的发生频率也明显下降, 推测野生大豆向栽培大豆进化过程中, 一方面形成了新的单倍型, 另一方面因为瓶颈效应部分单倍型的频率降低甚至消失。

关 键 词:栽培大豆  野生大豆  SNP标记  遗传变异  
收稿时间:2009-09-07
修稿时间:2009-10-14

Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode
LI Ying-Hui,YUAN Cui-Ping,ZHANG Chen,LI Wei,NAN Hai-Yang,CHANG Ru-Zhen,QIU Li-Juan.Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode[J].Hereditas,2009,31(12):1259-1264.
Authors:LI Ying-Hui  YUAN Cui-Ping  ZHANG Chen  LI Wei  NAN Hai-Yang  CHANG Ru-Zhen  QIU Li-Juan
Institution:National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Germplasm & Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract:For clarifying the difference of genetic diversity and linkage disequilibrium (LD) level between cultivated (Glycine max (L.) Merr.) and annual wild soybean (Glycine soja Sieb. & Zucc.), genetic variation pattern of 8 SNP loci developed from soybean cyst nematode resistance candidate genes rhg1 and Rhg4 in soybean germplasm were analyzed. The results indicated that G. max population, consisted of cultivated soybean mini-core collection and modern cultivars, had a higher LD levels (R2 value is 0.216) than G. soja population. Since 100% of pairwise loci within a gene and 16.6% of pairwise loci between genes were significant in G. max population, two specific LD regions were formed for each gene. A total of 46 haplotypes were detected in 363 soybean germplasm. The population of G. soja had less number of haplotypes and higher haplotype diversity than the population of G. max. Among the 31 population-specific haplotypes, 15 haplotypes were specific for G. soja population. In addition, the frequency of two major predominant haplotypes (Hap_10 and Hap_11) in G. soja population was obviously decreased in G. max population, which might indicate that some new haplotypes were formed and some old haplotypes were lost during the G. max domesticated from G. soja.
Keywords:Glycine max  Glycine soja  SNP marker  genetic variation
本文献已被 万方数据 等数据库收录!
点击此处可从《遗传》浏览原始摘要信息
点击此处可从《遗传》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号