首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterodimeric DNA-binding dyes designed for energy transfer: synthesis and spectroscopic properties.
Authors:S C Benson  P Singh  and A N Glazer
Abstract:Heterodimeric dyes are described which bind tightly to double-stranded (dsDNA) with large fluorescence enhancements. These dyes are designed to exploit energy transfer between donor and acceptor chromophores to tune the separation between excitation and emission wavelengths. The dyes described here absorb strongly at the 488 nm argon ion line, but emit at different wavelengths, and can be applied to multiplex detection of various targets. The chromophores in these dyes, a thiazole orange-thiazole blue heterodimer (TOTAB), two different thiazole orange-ethidium heterodimers (TOED1 and TOED2), and a fluorescein-ethidium heterodimer (FED), are in each case linked through polymethyleneamine linkers. The emission maxima of the DNA-bound dyes lie at 662 (TOTAB), 614 (TOED 2), and 610 nm (FED). The dyes showed a > 100 fold enhancement of the acceptor chromophore fluorescence on binding to dsDNA and no sequence selectivity. In comparison with direct 488 nm excitation of the constituent monomeric dyes, in the heterodimers the fluorescence of the acceptor chromophores was greatly enhanced and the emission of the donor chromophores quenched by over 90%. The acceptor emission per DNA-bound dye molecule was constant from 100 DNA bp:dye to 20 bp:dye and decreased sharply at higher dye:DNA ratios.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号