首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids
Authors:Chenguang Fan  Hai Xiong  Noah M Reynolds  Dieter S?ll
Institution:1Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA;2Department of Chemistry, Yale University, New Haven, CT 06520-8144, USA
Abstract:Genetic encoding of noncanonical amino acids (ncAAs) into proteins is a powerful approach to study protein functions. Pyrrolysyl-tRNA synthetase (PylRS), a polyspecific aminoacyl-tRNA synthetase in wide use, has facilitated incorporation of a large number of different ncAAs into proteins to date. To make this process more efficient, we rationally evolved tRNAPyl to create tRNAPyl-opt with six nucleotide changes. This improved tRNA was tested as substrate for wild-type PylRS as well as three characterized PylRS variants (Nϵ-acetyllysyl-tRNA synthetase AcKRS], 3-iodo-phenylalanyl-tRNA synthetase IFRS], a broad specific PylRS variant PylRS-AA]) to incorporate ncAAs at UAG codons in super-folder green fluorescence protein (sfGFP). tRNAPyl-opt facilitated a 5-fold increase in AcK incorporation into two positions of sfGFP simultaneously. In addition, AcK incorporation into two target proteins (Escherichia coli malate dehydrogenase and human histone H3) caused homogenous acetylation at multiple lysine residues in high yield. Using tRNAPyl-opt with PylRS and various PylRS variants facilitated efficient incorporation of six other ncAAs into sfGFP. Kinetic analyses revealed that the mutations in tRNAPyl-opt had no significant effect on the catalytic efficiency and substrate binding of PylRS enzymes. Thus tRNAPyl-opt should be an excellent replacement of wild-type tRNAPyl for future ncAA incorporation by PylRS enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号