首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Generalization of predator recognition: Velvet geckos display anti-predator behaviours in response to chemicals from non-dangerous elapid snakes
Authors:Jonathan K WEBB  Weiguo DU  David PIKE  Richard SHINE
Institution:Jonathan K. WEBB~(1*),Weiguo DU~2,David PIKE~1,Richard SHINE~1 1 School of Biological Sciences,University of Sydney,NSW 2006,Australia 2 Department of Environmental Sciences,School of Life Sciences,Hangzhou Normal College,310036,Hangzhou,Zhejiang,China
Abstract:Many prey species detect chemical cues from predators and modify their behaviours in ways that reduce their risk of predation. Theory predicts that prey should modify their anti-predator responses according to the degree of threat posed by the predator. That is, prey should show the strongest responses to chemicals of highly dangerous prey, but should ignore or respond weakly to chemicals from non-dangerous predators. However, if anti-predator behaviours are not costly, and predators are rarely encountered, prey may exhibit generalised antipredator behaviours to dangerous and non-dangerous predators. In Australia, most elapid snakes eat lizards, and are therefore potentially dangerous to lizard prey. Recently, we found that the nocturnal velvet gecko Oedura lesueurii responds to chemicals from dangerous and non-dangerous elapid snakes, suggesting that it displays gen-eralised anti-predator behaviours to chemicals from elapid snakes. To explore the generality of this result, we videotaped the be-haviour of velvet geckos in the presence of chemical cues from two small elapid snakes that rarely consume geckos: the nocturnal golden-crowned snake Cacophis squamulosus and the diurnal marsh snake Hemiaspis signata. We also videotaped geckos in tri-als involving unsceted cards (controls) and cologne-scented cards (pungency controls). In trials involving Cacophis and Hemi-aspis chemicals, 50% and 63% of geckos spent long time periods (> 3 min) freezing whilst pressed flat against the substrate, re-spectively. Over half the geckos tested exhibited anti-predator behaviours (tail waving, tail vibration, running) in response to Ca-cophis (67%) or Hemiaspis (63%) chemicals. These behaviours were not observed in control or pungency control trials. Our re-sults support the idea that the velvet gecko displays generalised anti-predator responses to chemical cues from elapid snakes. Generalised responses to predator chemicals may be common in prey species that co-occur with multiple, ecologically similar, dangerous predators.
Keywords:Predation risk  Chemical cues  Lizard  Elapidae  Gekkonidae  Olfaction  Multipredator
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号