首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recombinant human midkine stimulates proliferation of articular chondrocytes
Authors:Z H Zhang  H X Li  Y P Qi  L J Du  S Y Zhu  M Y Wu  H L Lu  Y Yu  W Han
Institution:1. Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China;2. Xinyuan Institute of Medicine and Biotechnology, School of Life Science, Zhejiang Sci‐Tech University, Hangzhou, China;3. Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
Abstract:Objectives: Midkine, a heparin‐binding growth factor, promotes population growth, survival and migration of several cell types, but its effect on articular chondrocytes remains unknown. The aim of this study was to investigate its role on proliferation of articular chondrocytes in vitro and in vivo. Materials and methods: Bromodeoxyuridine incorporation and MTT assays were performed to examine the proliferative effect of recombinant human midkine (rhMK) on primary articular chondrocytes. Activation of extracellular signal‐regulated kinase (ERK) and phosphatidylinositol 3‐kinase (PI3K) was analysed using western blot analysis. Systemic and local delivery of rhMK into mice and rats was preformed to investigate the proliferative effect of rhMK in vivo, respectively. Histological evaluation, including measurement of articular cartilage thickness, cell density, matrix staining and immunostaining of proliferating cell nuclear antigen was carried out. Results: rhMK promoted proliferation of articular chondrocytes cultured in a monolayer, which was mediated by activation of ERK and PI3K. The proliferative role of rhMK was not coupled to dedifferentiation of culture‐expanded cells. Consistent with its action in vitro, rhMK stimulated proliferation of articular chondrocytes in vivo when it was administered subcutaneously and intra‐articularly in mice and rats, respectively. Conclusion: Our results demonstrate that rhMK stimulates proliferation of primary articular chondrocytes in vitro and in vivo. The results of this study warrant further examination of rhMK for treatment of animal models of articular cartilage defects.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号