首页 | 本学科首页   官方微博 | 高级检索  
   检索      

鼎湖山地带性植被及其不同演替阶段水文学过程长期对比研究
引用本文:周传艳,周国逸,闫俊华,王旭.鼎湖山地带性植被及其不同演替阶段水文学过程长期对比研究[J].植物生态学报,2005,29(2):208-217.
作者姓名:周传艳  周国逸  闫俊华  王旭
作者单位:(1 中国科学院鼎湖山森林生态系统定位研究站,广州510650)(2 中国科学院研究生院,北京100039)
基金项目:中国科学院知识创新工程项目
摘    要: 分析鼎湖山3种植被类型生态系统水文的长期连续观测资料,采用时空互代的方法,得到如下一些结果:1)鼎湖山自然保护区东沟集水区产水量达到降水量的66.5%,日径流量高峰的出现相对降水的发生滞后1 d左右。2)地下水位平均稳定在2.22 m,最低为2.84 m,最高为1.14 m。1999、2000、2001、2002和 2003年地下水位平均值分别为2.38,2.27,2.08,2.13和2.11 m。鼎湖山东沟集水区每日地下水位与前16 d每一天的降水量相关。3)随着时间推移3种不同的植物群落中土壤含水量都有减少的趋势。季风林(p<0.01)和混交林(p<0.05)的土壤含水量减少趋势具有统计上的显著性,松林除外。4)鼎湖山3个处于不同演替阶段的植物群落其穿透水量与大气降水皆呈线性相关,它们的R2值随演替的进展而减小。穿透水占大气降水的比例也随演替进展而减少,松林、混交林和季风林分别为83.4%、68.3%和59.9%。松林、混交林和季风林的树干茎流占大气降水的比例分别为1.9%、6.5%和8.3%。树干茎流和胸径的关系受控于整个群落整体的影响而不仅仅是某个单一物种,并且群落的郁闭程度和结构是影响降水在林内再次分配的关键因素。季风林2月大气降水28.7 mm林冠截流率为83.3%,而在大气降水为297.8 mm的6月林冠截留率仅为18.9%,并且随着植物群落的演替,从松林、混交林到季风林的过程中林冠截留逐渐增大。

关 键 词:鼎湖山自然保护区  季风林  混交林  松林  水文学过程
修稿时间:2004年2月18日

LONG-TERM COMPARATIVE STUDY OF THE HYDROLOGICAL CHARACTERISTICS OF FORESTS IN DIFFERENT SUCCESSIONAL STAGES IN THE DINGHUSHAN BIOSPHERE RESERVE, GUANGDONG PROVINCE, CHINA
ZHOU Chuan-Yan,ZHOU Guo-Yi,YAN Jun-hua,WANG Xu.LONG-TERM COMPARATIVE STUDY OF THE HYDROLOGICAL CHARACTERISTICS OF FORESTS IN DIFFERENT SUCCESSIONAL STAGES IN THE DINGHUSHAN BIOSPHERE RESERVE, GUANGDONG PROVINCE, CHINA[J].Acta Phytoecologica Sinica,2005,29(2):208-217.
Authors:ZHOU Chuan-Yan  ZHOU Guo-Yi  YAN Jun-hua  WANG Xu
Institution:(1 Dinghushan Forest Ecosystem Research Station, Chinese Academy of Sciences, Guangzhou, 510650, China)
Abstract:Dinghushan biosphere reserve (112°30′39″-112°33′41″ E, 23°09′21″-23°11′30″ N) is located in central Guangdong Province in southern China, about 84 km from Guangzhou city, with an area of 1 156 hm2. Due to its location on the tropic of cancer, the forest vegetation is very rich and dominated by monsoon evergreen broad-leaved forests. The dominant forest types in the Dinghushan biosphere reserve are Pinus massoniana forests (PF), mixed Pinus massoniana/broad-leaved forests (PBF), and monsoon evergreen broad-leaved forests (MBF), which form a natural successional sequence. The aim of this paper was to quantify the magnitude and annual variation of water yields in the Dinghushan Nature Reserve in the three forest types, which would be used for estimating carbon outputs in streamflow, and to discuss how hydrological processes vary at different successional stages of forest development. Climatic data were obtained from weather stations located at the Dinghushan Forest Ecosystem Research Station, Chinese Ecosystem Research Network (CERN). Runoff was monitored at three landscape levels. The first level was the entire eastern watershed. The second level referred to small catchments within the larger watershed that were dominated by the different forest types, i.e., a PF catchment, a PBF catchment, and a MBF catchment. The third level referred to three surface runoff plots placed within each of the three catchments. Stream runoff in the eastern watershed and the three smaller catchments was monitored continuously year a round by measurement weirs with streamflow recorders. The ephemeral surface runoff from the nine surface runoff plots was collected in separate plastic tanks and the water level of each tank was recorded automatically following every precipitation event. The subsurface water table depth was recorded manually at 5-day intervals in wells located in the valley of the eastern watershed at elevations of 20-30 m. Soil water content has been measured monthly using neutron probes since 1983. Soil water content was measured at 10-15 places in each of the three catchments and distributed across the elevational gradient. At each point, the water content was monitored at three soil depths, 0-15, 15-30 and 30-45 cm. Throughfall was collected at four sites in each catchment using cross-shaped troughs with a horizontal area of 2.25 m2, and was measured using a fluviograph (Zhou, 1997). Thirty trees adjacent to each throughfall site that represented the range of species and size of trees in each catchment were selected and stemflow monitored (Gash et al., 1978). Stemflow was collected in an open PVC tube wrapped around the stem of each tree that led to a tipping bucket rain gauge. Throughfall and stemflow were monitored from April 1999 to April 2000, during which time there were 61 rain events. Leaf area index and canopy cover were measured at 10 sampling sites within each catchment four times each year using a CI-110 digital plant canopy imager (CID, Inc. Vancouver). The water yield in the eastern watershed of Dinghushan biosphere reserve was 66.5% of its rainfall with the maximum outflow occurring about one day after a rain event. The subsurface water table averaged 2.22 m below the soil surface, with the deepest water levels at 2.84 m and highest at 1.14 m depth. The annual average position was 2.38, 2.27, 2.08, 2.13 and 2.11 m deep in the years 1999, 2000, 2001, 2002 and 2003, respectively. The depth of the water table in the eastern watershed was correlated with rainfall events that occurred 16 days previously. There was an abating tendency of soil water content for all the three forest communities. The tendency was statistically significant for MBF (p<0.01) and PBF (p<0.05), whereas no statistically significant effect for the PF was found. The relationship between the amount of throughfall and precipitation was linear for the three different forest communities at different successional stages, but the correlation decreased from MBF, PBF uo PF. The ratio of throughfall to precipitation also decreased with successional stage of the forest, from 83.4%, 68.3% to 59.9% for the PF, PBF and MBF, respectively. The relationship of stem flow with DBH was controlled by the effects of the whole forest community instead of a single species. The canopy structure of the forest community played a key role in the redistribution of precipitation. The canopy interception rate in the MBF was 83.3% in February when total precipitation was 28.7 mm, but was only 18.9% when precipitation was 297.8 mm in June. The canopy interception rate increased in the three forest types from PF, PBF to MBF.
Keywords:Dinghushan biosphere reserve  Stream outflow  Throughflow  Stemflow  Hydrological processes  Successional stage
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《植物生态学报》浏览原始摘要信息
点击此处可从《植物生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号