首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of the Dicarboxylic Acids Malate and Fumarate on E. coli O157:H7 and Salmonellaenterica Typhimurium Populations in Pure Culture and in Mixed Ruminal Microorganism Fermentations
Authors:David J Nisbet  Todd R Callaway  T S Edrington  Robin C Anderson and N Krueger
Institution:(1) Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845, USA
Abstract:The dicarboxylic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total volatile fatty acid (VFA) production, and reduce lactic acid accumulation in a manner similar to ionophores. These acids stimulate the ruminal bacterium Selenomonas ruminantium to ferment lactate to produce propionate. Thus, dicarboxylic acids have been suggested as nonantibiotic modifiers of the ruminal fermentation, but their impact on ruminal microbial ecology remains unknown. This study was designed to examine what effects these modifiers may have on intestinal pathogen populations such as Escherichia coli O157:H7 and S. enterica Typhimurium prior to their widespread incorporation into cattle rations. Pure cultures of E. coli O157:H7 strain 933 and S. enterica Typhimurium were grown with malate and fumarate added at 0, 1, 5, 10, and 20 mM (v/v; n = 3). Neither dicarboxylic acid inhibited (p > 0.1) the growth rate or final populations of E. coli O157:H7 or S. enterica Typhimurium. Ruminal fluid was collected from cattle (n = 2) and E. coli O157:H7 and S. enterica Typhimurium were added to separate ruminal fermentations incubated for 24 h at 39°C. Fumarate and malate were added at concentrations of 0, 5, 10, and 20 mM (v/v; n = 2) and incubated for 24 h at 39°C. Malate or fumarate addition did not affect (p > 0.1) populations of E. coli O157:H7 or S. enterica Typhimurium. However, the final pH was increased (p < 0.05), the acetate:propionate ratio was decreased (p < 0.05), and the total VFA production was increased (p < 0.05) by ≥10 mM dicarboxylic acid addition. These results confirm that dicarboxylic acids can modify ruminal fermentation, but they do not affect populations of critical foodborne pathogens. Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号