首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Correction to: Genetic characterization of Addison’s disease in Bearded Collies
Authors:Gershony  Liza C  Belanger  Janelle M  Hytönen  Marjo K  Lohi  Hannes  Famula  Thomas R  Oberbauer  Anita M
Institution:1.Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, cedex, 91198, Gif-sur-Yvette, France
;2.FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
;
Abstract:Diversity of the CRISPR locus of Mycobacterium tuberculosis complex has been studied since 1997 for molecular epidemiology purposes. By targeting solely the 43 spacers present in the two first sequenced genomes (H37Rv and BCG), it gave a biased idea of CRISPR diversity and ignored diversity in the neighbouring cas-genes. We set up tailored pipelines to explore the diversity of CRISPR-cas locus in Short Reads. We analyzed data from a representative set of 198 clinical isolates as evidenced by well-characterized SNPs. We found a relatively low diversity in terms of spacers: we recovered only the 68 spacers that had been described in 2000. We found no partial or global inversions in the sequences, letting always the Direct Variant Repeats (DVR) in the same order. In contrast, we found an unexpected diversity in the form of: SNPs in spacers and in Direct Repeats, duplications of various length, and insertions at various locations of the IS6110 insertion sequence, as well as blocks of DVR deletions. The diversity was in part specific to lineages. When reconstructing evolutionary steps of the locus, we found no evidence for SNP reversal. DVR deletions were linked to recombination between IS6110 insertions or between Direct Repeats. This work definitively shows that CRISPR locus of M. tuberculosis did not evolve by classical CRISPR adaptation (incorporation of new spacers) since the last most recent common ancestor of virulent lineages. The evolutionary mechanisms that we discovered could be involved in bacterial adaptation but in a way that remains to be identified.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号