首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbouring BRAFV600E by synergistically decreasing global trimethylation of H3K27
Authors:Hao Fu  Lin Cheng  Ri Sa  Yuchen Jin  Libo Chen
Institution:Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
Abstract:Clinical efficacy of differentiation therapy with mitogen-activated protein kinase inhibitors (MAPKi) for lethal radioiodine-refractory papillary thyroid cancer (RR-PTC) urgently needs to be improved and the aberrant trimethylation of histone H3 lysine 27 (H3K27) plays a vital role in BRAFV600E-MAPK-induced cancer dedifferentiation and drug resistance. Therefore, dual inhibition of MAPK and histone methyltransferase (EZH2) may produce more favourable treatment effects. In this study, BRAFV600E-mutant (BCPAP and K1) and BRAF-wild-type (TPC-1) PTC cells were treated with MAPKi (dabrafenib or selumetinib) or EZH2 inhibitor (tazemetostat), or in combination, and the expression of iodine-metabolizing genes, radioiodine uptake, and toxicity were tested. We found that tazemetostat alone slightly increased iodine-metabolizing gene expression and promoted radioiodine uptake and toxicity, irrespective of the BRAF status. However, MAPKi induced these effects preferentially in BRAFV600E mutant cells, which was robustly strengthened by tazemetostat incorporation. Mechanically, MAPKi-induced decrease of trimethylation of H3K27 was evidently intensified by tazemetostat in BRAFV600E-mutant cells. In conclusion, tazemetostat combined with MAPKi enhances differentiation of PTC cells harbouring BRAFV600E through synergistically decreasing global trimethylation of H3K27, representing a novel differentiation strategy.
Keywords:differentiation therapy  EZH2 inhibitor  H3K27me3  MAPK inhibitor  thyroid cancer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号