首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic diversity and population structure of a cyprinid fish (Ancherythroculter nigrocauda) in a highly fragmented river
Authors:Dongdong Zhai  Zhi Zhang  Futie Zhang  Huanzhang Liu  Wenxuan Cao  Xin Gao
Abstract:In this study, samples of Ancherythroculter nigrocauda, an endemic fish in the upper Yangtze River, were collected above and below dams in the Longxi River, a tributary of the upper Yangtze River, China, to investigate the genetic impacts of dams. The mitochondrial cytochrome b gene (cyt b) and 13 microsatellite (SSR) loci were used to analyze whether dams have resulted in loss of genetic diversity of the two fragmented populations or caused genetic differentiation between them. The results showed that the haplotype diversity (0.488; 0.486), nucleotide diversity (0.084%; 0.082%) and average expected heterozygosity (0.652; 0.676) of the two populations were all at a low level, and recent bottlenecks were detected. However, there was no genetic differentiation detected by the low genetic differentiation index (Fst, cyt b: ?0.1677, p = 0.99707; SSR: 0.00259, p = 0.81427). Besides, 11 pairs of half‐sibling relationship were found between the two populations indicating that there were individual movements and gene flow between them. This could be the larvae moving from upstream to downstream when water spilled over dams in flooding season. Therefore, our analysis showed that the dams have caused a loss of genetic diversity of the populations of A. nigrocauda in the Longxi River, blocked the active upstream movement but allowing passive downstream drift of larvae.
Keywords:bottleneck effect  gene flow  genetic differentiation  genetic diversity  genetic drift  sibship
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号