首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A hexapedal jointed-leg model for insect locomotion in the horizontal plane
Authors:Raghavendra P Kukillaya  Philip J Holmes
Institution:(1) Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA;(2) Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
Abstract:We develop a simple model for insect locomotion in the horizontal (ground) plane. As in earlier work by Seipel et al. (Biol Cybern 91(0):76–90, 2004) we employ six actuated legs that also contain passive springs, but the legs, with “hip” and ‘knee’ joints, better represent insect morphology. Actuation is provided via preferred angle inputs at each joint, corresponding to zero torques in the hip and knee springs. The inputs are determined from estimates of foot forces in the cockroach Blaberus discoidalis via an inverse problem. The head–thorax–body is modeled as a single rigid body, and leg masses, inertia and joint dissipation are ignored. The resulting three degree-of-freedom dynamical system, subject to feedforward joint inputs, exhibits stable periodic gaits that compare well with observations over the insect’s typical speed range. The model’s response to impulsive perturbations also matches that of freely-running cockroaches (Jindrich and Full, J Exp Biol 205:2803–2823, 2002), and stability is maintained in the face of random foot touchdowns representative of real insects. We believe that this model will allow incorporation of realistic muscle models driven by a central pattern generator in place of the joint actuators, and that it will ultimately permit the study of proprioceptive feedback pathways involving leg force and joint angle sensing.
Keywords:Insect locomotion  Jointed legs  Lateral leg spring model  Hexapedal  Periodic gait  Poincaré map  stability
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号