首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding interface prediction by combining protein–protein docking results
Authors:Howook Hwang  Thom Vreven  Zhiping Weng
Institution:Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, , Worcester, Massachusetts, 01605
Abstract:We developed a method called residue contact frequency (RCF), which uses the complex structures generated by the protein–protein docking algorithm ZDOCK to predict interface residues. Unlike interface prediction algorithms that are based on monomers alone, RCF is binding partner specific. We evaluated the performance of RCF using the area under the precision‐recall (PR) curve (AUC) on a large protein docking Benchmark. RCF (AUC = 0.44) performed as well as meta‐PPISP (AUC = 0.43), which is one of the best monomer‐based interface prediction methods. In addition, we test a support vector machine (SVM) to combine RCF with meta‐PPISP and another monomer‐based interface prediction algorithm Evolutionary Trace to further improve the performance. We found that the SVM that combined RCF and meta‐PPISP achieved the best performance (AUC = 0.47). We used RCF to predict the binding interfaces of proteins that can bind to multiple partners and RCF was able to correctly predict interface residues that are unique for the respective binding partners. Furthermore, we found that residues that contributed greatly to binding affinity (hotspot residues) had significantly higher RCF than other residues. Proteins 2014; 82:57–66. © 2013 Wiley Periodicals, Inc.
Keywords:protein‐protein docking  protein interface prediction  machine learning  support vector machine  hotspot prediction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号