首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inborn errors of cobalamin metabolism: Effect of cobalamin supplementation in culture on methylmalonyl CoA mutase activity in normal and mutant human fibroblasts
Authors:Huntington F Willard  Leon E Rosenberg
Institution:(1) Department of Human Genetics, Yale University School of Medicine, 06510 New Haven, Connecticut
Abstract:We have examined the effect of addition of hydroxocobalamin to growth medium on the activity of the adenosylcobalamin-requiring enzyme methylmalonyl CoA mutase in normal human fibroblasts and in mutant human fibroblasts derived from patients with inherited methylmalonicacidemia. The mutant cell lines were assigned to four distinct genetic complementation groups (cbl A, cbl B, cbl C, and cbl D), each deficient in some step in the synthesis of adenosylcobalamin from hydroxocobalamin. After control cells were grown in cobalamin-supplemented medium, mutase holoenzyme activity increased markedly in a time- and concentration-dependent fashion. Growth in cobalamin-supplemented medium had no effect on mutase activity in some mutant lines belonging to the cbl B group, while activity increased severalfold in other cbl B mutants and in all cbl A, cbl C, and cbl D mutants examined, although mutase activity was still <10% of control. Comparison of mutase holoenzyme activity and total propionate pathway activity suggests that enhancement of mutase activity in mutant cells after cobalamin supplementation to values 5–10% of control may be sufficient to overcome the inherited metabolic block and to restore total pathway activity to normal.This work was supported in part by a research grant from the National Institutes of Health (AM 12579). H. F. W. is a recipient of a traineeship from the National Institutes of Health (T01-GM02299).
Keywords:vitamin B12  vitamin-responsive metabolic diseases  human cultured fibroblasts  apoenzyme-coenzyme interactions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号