首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Floral and macroecological evolution within Cyrtanthus (Amaryllidaceae): Inferences from combined analyses of plastid ndhF and nrDNA ITS sequences
Authors:DA Snijman  AW Meerow
Institution:1. Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa;2. USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Road, Miami, Florida 33158, USA
Abstract:One of the most diverse members of Amaryllidaceae is Cyrtanthus Aiton, a large, sub-Saharan Africa genus of approximately 55 species found mostly in South Africa. To investigate phylogenetic and biogeographic relationships within Cyrtanthus, sequence data from the plastid ndhF gene and the ITS nrDNA region for 41 species were analyzed with parsimony, maximum likelihood, and Bayesian-inference approaches. Various recombination detection algorithms were used to test for interspecific hybridization in the ITS alignment. The genus resolved as monophyletic, comprising three poorly to well-supported major lineages: a predominantly Afrotemperate lineage, largely restricted to seasonally moist sites in summer rainfall southern Africa, a subtropical lineage found mostly in nonseasonal rainfall regions, often in dry habitats, and a Cape Floristic Region-centered lineage in which most species are concentrated in the summer-dry to nonseasonal rainfall southwest. The ITS sequence alignment shows no evidence for reticulation between any of the species. Relationships inferred by the molecular data disagree with those derived from morphological data, but agree with previously published groupings based on karyotype morphology. Fitch optimization of selected floral characters on the combined gene tree reveals recurrent patterns of convergence. Ornithophilous floral forms occur in parallel among the three primary clades, putatively sphingophilous species are concentrated in the Afrotemperate lineage in seasonally moist upland grasslands; the brush-type Aeropetes tulbaghia butterfly and inferred long-proboscid fly pollination syndromes are unique in the Cape lineage. Macroecological factors inferred to have influenced the evolution of Cyrtanthus are changes in rainfall seasonality, the advent of fire, and the availability of new habitats at high and low altitudes and in rock-free soils or rock crevices. This study gives greater clarity on relationships within the genus and enables its division into three informal infrageneric groups.
Keywords:Africa  Amaryllidaceae  Cyrtanthus  Floral morphology  Molecular systematics  Monocotyledons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号