首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization,using comparative proteomics,of differentially expressed proteins in the hippocampus of the mesial temporal lobe of epileptic rats following treatment with valproate
Authors:Wu  Liwen  Peng  Jing  Wei  Chaoping  Liu  Gu  Wang  Guoli  Li  Kongzhao  Yin  Fei
Institution:(1) Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China;
Abstract:The objective of the study was to explore the pathogenesis of mesial temporal lobe epilepsy (MTLE) and the mechanism of valproate administration in the early stage of MTLE development. We performed a global comparative analysis and function classification of differentially expressed proteins using proteomics. MTLE models of developmental rats were induced by lithium-pilocarpine. Proteins in the hippocampus were separated by 2-DE technology. PDQuest software was used to analyze 2-DE images, and MALDI-TOF-MS was used to identify the differentially expressed proteins. Western blot was used to determine the differential expression levels of synapse-related proteins synapsin-1, dynamin-1 and neurogranin in both MTLE rat and human hippocampus. A total of 48 differentially expressed proteins were identified between spontaneous and non-spontaneous MTLE rats, while 41 proteins between MTLE rats and post valproate-treatment rats were identified. All of the proteins can be categorized into several groups by biological functions: synaptic and neurotransmitter release, cytoskeletal structure and dynamics, cell junctions, energy metabolism and mitochondrial function, molecular chaperones, signal regulation and others. Western blot results were similar to the changes noted in 2-DE. The differentially expressed proteins, especially the proteins related to synaptic and neurotransmitter release function, such as synapsin-1, dynamin-1 and neurogranin, are probably involved in the mechanism of MTLE and the pharmacological effect of valproate. These findings may provide important clues to elucidate the mechanism of chronic MTLE and to identify an optimum medication intervention time and new biomarkers for the development of pharmacological therapies targeted at epilepsy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号